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Abstract— Focused transmit beamforming is the most
commonly used acquisition scheme for echocardiograms,
but suffers from relatively low frame rates, and in 3D,
even lower volume rates. Fast imaging based on unfocused
transmits has disadvantages such as motion decorrelation
and limited harmonic imaging capabilities. This work in-
troduces a patient-adaptive focused transmit scheme that
has the ability to drastically reduce the number of trans-
mits needed to produce a high-quality ultrasound image.
The method relies on posterior sampling with a temporal
diffusion model to perceive and reconstruct the anatomy
based on partial observations, while subsequently taking
an action to acquire the most informative transmits. This
active perception modality outperforms random and equi-
spaced subsampling on the 2D EchoNet-Dynamic dataset
and a 3D Philips dataset, where we actively select focused
elevation planes. Furthermore, we show it achieves better
performance in terms of generalized contrast-to-noise ratio
when compared to the same number of diverging waves
transmits on three in-house echocardiograms. Additionally,
we can estimate ejection fraction using only 2% of the total
transmits and show that the method is robust to outlier
patients. Finally, our method can be run in real-time on GPU
accelerators from 2023. The code is publicly available at
https://tue-bmd.github.io/ulsa/

Index Terms— Beamforming, cognitive ultrasound, diffu-
sion models

I. INTRODUCTION

ULTRASOUND imaging is one of the most used medi-
cal imaging modalities. It brings advantages that other

modalities such as magnetic resonance imaging (MRI) and
computed tomography (CT) do not bring, such as, being
affordable, portable, real-time and non-ionizing. These advan-
tages make ultrasound very accessible [1].

For 2D ultrasound, we can acquire images at very high
frame rates due to acquisition schemes such as diverg-
ing waves, but in more challenging circumstances, such as
echocardiograms, scanners typically rely on harmonic imag-
ing, which in turn needs a high-amplitude pressure field gen-
erated by focused transmits [2]. However, focused transmits

This work was supported by the European Research Council (ERC)
under the ERC starting grant nr. 101077368 (US-ACT).

Wessel L. van Nierop and Oisı́n Nolan contributed equally to this
work.

Wessel L. van Nierop, Oisı́n Nolan, Tristan S. W. Stevens,
and Ruud J. G. van sloun are with the Department of Electrical
Engineering, Eindhoven University of Technology, 5612 AZ Eind-
hoven, The Netherlands (email: w.l.v.nierop@tue.nl; o.i.nolan@tue.nl;
t.s.w.stevens@tue.nl; r.j.g.v.sloun@tue.nl)

reduce frame-rate dramatically, which means that, especially
for 3D echocardiography, it is hard to obtain high-quality
and fast ultrasound scans. This shows there is a need for a
reduction of transmit events while keeping the high-quality
images for diagnostic accuracy.

In addition to accelerating frame rates, reducing the number
of necessary transmit events also reduces certain cost factors
associated with the acquisition. One such cost is power usage,
which currently bottlenecks imaging modalities that depend
on battery power, such as wearable ultrasound patches for
continuous monitoring [3], [4]. Another cost factor is the
bandwidth required to communicate the acquired data to a
server for processing, which is of particular relevance to cloud-
based ultrasound [5].

This work aims to reduce the number of acquisitions needed
to obtain a high-quality ultrasound image by actively selecting
those measurements that are expected to be most informative.
This fits into the recently proposed paradigm of cognitive
ultrasound, in which an autonomous agent actively designs
future transmit events to maximize information-gain [6]. We
drastically reduce the number of transmit events per frame and
thus increase frame rate as a potential alternative to unfocused
transmits, with improved tissue-harmonic generation and re-
duced motion decorrelation. We achieve this by equipping an
imaging agent with a generative model of the ultrasound scene
and observations, tracking beliefs about plausible anatomical
explanations for the observations it performs. Based on these
beliefs, the agent pursues acquisitions that have the highest
expected information gain.

This paper presents the following main contributions. (1)
We propose a method for reconstructing ultrasound video
from sparse acquisitions using a temporal diffusion model that
exploits the sequential nature of ultrasound. (2) We propose
an active perception algorithm that designs transmits which
maximizes information gain in a computationally efficient
way. (3) The experimental results show that selecting focused
transmits outperforms diverging waves for the same number of
transmit events in terms of generalized contrast-to-noise ratio
(gCNR).

II. BACKGROUND

A. Focused Ultrasound Imaging

Focused imaging is a technique used to concentrate acoustic
energy at specific locations within the body. Focused line
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scanning is the most widely used transmit strategy in com-
mercial ultrasound systems, offering enhanced lateral reso-
lution and improved image contrast relative to unfocused
transmissions [7]. This strategy allows the generation of
high-amplitude pressure fields, which are necessary for the
generation of harmonic components used in harmonic imag-
ing [2]. Harmonic imaging has become the gold standard for
echocardiograms due to the superior image quality in hard-to-
image patients [8]. However, line-by-line acquisition is time-
consuming, as each lateral line requires a separate transmit
event. As a result, the frame rate in this transmit mode is
limited by the number of lines, imaging depth, and the speed
of sound.

B. Active Perception
The goal of sensing is to acquire measurements in order

to gain information about parameters describing the state of
some environment of interest. Often, however, the acquisition
process has some constraints – for example, a limited field of
view might require that the sensor is steered in order to capture
a certain aspect of the environment [9]. Such a constraint
implies that the environment will only ever be partially
observed by each acquisition. Given some prior knowledge
about the parameters of the environment, however, the sensor
gains the ability to infer properties of the environment without
directly observing them. This process of inference on sensory
states may be described as perception, as distinct from simple
measurement [6]. We may then model this perception using
the Bayesian framework, where the perceiver infers a Bayesian
posterior over the parameters of the environment, with a causal
model mapping those parameters to observations serving as
the likelihood [10]. The aforementioned goal of sensing may
then be formalized in Bayesian terms, where H is the entropy
functional, x are the environmental parameters to be estimated,
A is the set of sensing actions, and y are the resulting
observations [11]:

InfoGainx(A,y) = H[p(x)]−H[p(x | A,y)]. (1)

In other words, the information gained by performing a sensing
action A is equal to the difference in uncertainty in x before
versus after observing the resulting measurements y.

The perception becomes active when the sequence of sens-
ing actions is optimized to maximize the expected information
gain, considering all the possible measurements that may result
from a given sensing action [11]:

a∗ = argmax
A

Ep(y|A)[InfoGainx(A,y)]

= argmax
A

I(x;y | A). (2)

Active perception is often performed greedily, and itera-
tively, first selecting the optimal sensing action according to
(2), performing inference on x given the new observations y,
and repeating, setting the posterior at step t to the prior at step
t+1. This process of iteratively alternating between perception
and action is referred to as a perception-action loop. For an
extensive description of active perception in the context of
ultrasound imaging, we refer the reader to [6].

C. Posterior Sampling with Diffusion Models

As mentioned in Section II-B, the ability to infer Bayesian
posterior distributions given partial observations is essential to
perception. Given the high-dimensional nature of ultrasound
video, we employ an approximate Bayesian method, perform-
ing posterior sampling with a Diffusion model (DM). DMs
are a powerful class of deep generative models capable of
performing prior and posterior sampling of high-dimensional
signals, such as images and videos [12]–[14]. They operate
by learning to reverse a corruption process wherein a sample
x0 ∈ RN from the target distribution is ‘diffused’ towards a
Gaussian noise sample ϵ ∼ N (0, I). This forward corruption
process is modeled as follows:

xτ = ατx0 + στϵ, (3)

where ατ and στ are called the signal and noise rates at step τ ,
respectively, collectively forming the diffusion schedule. This
creates a chain of samples [x0, ...,xτ , ...,xT ] interpolating
between x0 and xT = ϵ. DMs then reverse this process
iteratively, first predicting an estimate of the clean signal x̂0

from some xτ using a denoising neural network, and then
re-noising that estimate to a lower noise-level τ − 1 using
the forward process [15]. This process of denoising and re-
noising is repeated, refining x̂0 as τ → 0, and approaching
a new random sample from the true data distribution p(x).
More formally, with an estimate of the noise ϵ̂ predicted by
the denoiser, x̂0 can be computed by reversing the forward
process as follows:

x̂0 =
1

ατ
(xτ − στ ϵ̂). (4)

Tweedie’s formula [16] relates this quantity to the score
function of the marginal probability distribution over noisy
samples pτ (xτ ), indicating that denoising is equivalent to
taking a gradient step towards a region of higher probability
density in the target distribution, in the case where ϵ̂ is
produced by the minimum mean squared error denoiser:

x̂0 ≈ E[x0 | xτ ] =
1

ατ
(xτ + σ2

τ∇xτ
log pτ (xτ )). (5)

This notion of taking a step towards a region of higher
prior probability density is referred to as the prior step. Of
particular interest in this application is Bayesian posterior
sampling, wherein the model generates high-quality samples
conditioned on measurements y ∈ RM obtained according
to some known measurement model p(y | x). The Diffusion
posterior sampling (DPS) algorithm [17] solves this problem
by formulating a posterior score function:

∇xτ log pτ (xτ |y)︸ ︷︷ ︸
posterior

= ∇xτ
log pτ (x)︸ ︷︷ ︸
prior

+∇xτ
log pτ (y|xτ )︸ ︷︷ ︸
likelihood

.

(6)
The likelihood term in (6) is derived from a known mea-
surement model, typically with some additive noise, e.g.
p(y | x) = N (y;A(x), σ2

nI), where A is some measurement
operator. DPS then approximates the likelihood score at step
τ using the Tweedie estimate x̂0 computed during the prior
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step. With Gaussian measurement noise, this becomes:

∇xτ
log pτ (y | xτ ) ≃ −

1

σ2
nI
∇xτ
||y −A(x̂0)||22. (7)

Adding the gradient in equation (7) to xτ constitutes the
likelihood step. DPS alternates between prior and likelihood
steps during inference, leading to samples that accord with the
measurements while remaining plausible under the prior.

III. RELATED WORK

Subsampling methods have long been employed in medical
imaging to decrease costs associated with acquisition. These
methods typically consist of two important parts: the subsam-
pling mask, choosing which part of the signal to sample, and
the reconstruction method, recovering the target signal from
the subsampled signal. Many approaches to implementing
each part have been proposed in the literature. In general,
the subsampling mask may be random or data-driven; it may
also be fixed across samples or sample-adaptive. Similarly,
the reconstruction model may be learned from data using
machine learning, or hand-crafted using classical optimization
techniques and simple priors. In what follows, we highlight
recent work in subsampling for medical imaging, in each case
categorising the approach according to the taxonomy above,
and relating it to our proposed method.

In ultrasound imaging, a number of methods for subsam-
pling channel data have been proposed, with the aim of
decreasing data volume and increasing frame rates. Com-
pressed sensing was initially employed to this end [18], [19],
with more recent methods relying on deep learning. A pop-
ular deep-learning-based approach has been to employ fixed
subsampling masks designed using domain knowledge, e.g.,
sparse array designs [20], and Convolutional Neural Network
(CNN) reconstruction models to map the subsampled data
to fully-sampled data [21]–[23]. The approach by Huijben
et al. [24] instead learns subsampling masks jointly with
a CNN reconstruction model, employing the Gumbel-Max
trick [25] to backpropagate through the subsampling operation.
Afrakteh et al. [26] tackle the problem of focused scan-line
subsampling, using tensor-completion methods to inpaint the
data-cubes containing the subsampled frames. We tackle the
same problem in this paper, but use a data-driven prior in
the form of a diffusion model with an adaptive subsampling
mask, as opposed to the nuclear-norm tensor regularization
and random subsampling mask used by Afrakteh et al.

A wide range of subsampling methods has been proposed
for MRI acceleration, spurred in part by high-quality open-
access datasets such as fastMRI [27]. The most successful of
these methods use deep learning, typically with CNN-based
architectures for reconstruction. Initial approaches opted for
fixed masks, some hand-crafted [28] and some learned from
data [29], [30]. Some more recent methods instead actively
design the subsampling mask, leading to input-specific masks
and improved reconstruction accuracy [31]–[33]. Of particular
relevance to this work is dynamic MRI, which more closely
resembles ultrasound data due to the presence of temporal
correlation. A recent work by Yiasemis et al.[34] leverages
this temporal correlation by creating an active subsampling

model for dynamic MRI, training a U-Net[35] based model to
iteratively select which k-space lines to select per frame.

In this work, we identify the task of recovering fully-
sampled ultrasound frames from a subset of scanned lines as
being akin to inpainting, a popular task in computer vision and
image generation: in both cases, the goal is to optimally re-
cover the missing portion of the signal. We therefore choose to
use diffusion models, which have shown excellent performance
in inpainting [17], [36], to solve this problem. This modelling
choice is further motivated by recent success in applying
diffusion models to the domain of ultrasound, for synthetic
data generation [37], dehazing [38], and beamforming [39].

IV. METHOD

In this section, we present our proposed method in terms
of its two primary components: (i) perception, in which a
posterior distribution over the possible states of the tissue is
inferred from a partial observation, and (ii) action, in which
this perceived distribution is used to select the next transmit
lines. An overview of the method is shown in Figure 1.

A. Perception
The goal of the perception step is to infer a posterior

distribution over the tissue state xt at time t given the history
of observations and actions until that point, i.e. the distribu-
tion p(xt | y<t, A<t), where the shorthand < t indicates
1 . . . t. We implement this inference procedure using the DPS
algorithm described in Section II-C. Given that ultrasound
video exhibits strong temporal dependencies between frames,
it is important to model the conditional relationship between
xt and past measurements y<t. In order to model such
dependencies, we fit the diffusion model on sequences of W
consecutive frames X = [xt−W , . . . ,xt] sampled at random
from the training set, learning a prior over tensors X ∈ RN×W .
In other words, the model has a temporal context window
of size W . This amounts to a prior model with a W−order
Markov assumption on ultrasound video, where W can be
chosen to balance the benefits in predictive ability with the
cost of increasing training data sparsity and inference compute
as W increases. For the models presented in this work, we use
W = 3.

During inference, at each time step t we generate a set of
Np tensors X in parallel. The final image X[W ] in each tensor
represents one possible state of xt. These images, dubbed
particles, can then be used to approximate the posterior
distribution p(xt | y<t). Throughout the paper, we refer to this
set of particles {x(i)

t }
Np

i=1 as the agent’s belief distribution at
time t, with differences across particles indicating uncertainty
in the state of x. Throughout our experiments, we use Np = 4.

We must then specify a likelihood function to guide gener-
ation with DPS. We start by stacking our acquired scan-line
measurements in a measurement buffer Y = [yt−W , . . . ,yt].
Then, we define a measurement model simulating focused line-
scanning. This model assumes that for each focused transmit,
a single line of pixels extending along the focus line is
beamformed, and that a frame is created by concatenating a
string of such lines. The measurement model is thus a masking
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Fig. 1. 1 Initialize the particles with noise at t = 1 or partially-noised previous samples for t > 1. 2 Generate posterior samples using DPS.
3 Compute pixel-wise entropy from belief distribution. 4 Select next actions At+1 using K-Greedy Entropy Minimization. 5 Acquire the next

measurement. 6 Add new measurements to the measurement buffer. 7 Use the updated measurement buffer to run DPS at time t + 1. 8
Initialize the samples to be generated at time t + 1 using those generated at time t.

operation, wherein the full frame is mapped to a set of mea-
surements by revealing only those that were acquired. In par-
ticular, A ∈ RN×W is a measurement mask extending across
the context window containing ones at the pixel locations
measured by the acquired scan lines, and zeros elsewhere.
Since this measurement model is deterministic, its likelihood is
a Dirac delta distribution, i.e. p(Y|X,A) = δ(Y−A⊙X). In
order to ensure smooth gradients for DPS, however, we instead
use a Gaussian distribution, which is a continuous relaxation
of the Dirac delta. This yields the following likelihood, where
the variance σ2

n = γ−1 is a hyperparameter:

p(Y | X,A) = N (Y;A⊙ X, σ2
nI). (8)

Computing the score of this likelihood function produces the
following guidance step in DPS for diffusion step τ :

∇Xτ
log pτ (Y | Xτ ) ≃ −γ∇Xτ

||Y − A⊙ X̂0||22. (9)

In the case where the beamforming grid is specified in the
polar domain, we fit the diffusion model on polar domain
data, such that the model remains the same on polar and
Cartesian grids, in each case simply revealing or masking
vertical lines of pixels. In order to accelerate inference and
create a temporally consistent video, we employ SeqDiff [40]
initialization. Given that our DM is trained on stacks of images
X, the SeqDiff initialization becomes Xt,τinit ← ατinitXt−1 +
στinitϵ. Finally, we return for each frame a single reconstruction
image, x̃t, which is chosen to be the first particle x̃t := x

(1)
t

of the belief distribution.

B. Action
The action step aims to choose a set of actions to take at

time t + 1 given the belief distribution at time t. The action

space in this case is a discrete set of possible focused scan
locations {Aℓ | ℓ = 1, 2, . . . , L}, where there are L total
scan locations. Each action Aℓ then denotes the set of indices
of the pixels that are measured by that action, facilitating the
creation of a corresponding measurement maskM(Aℓ), where
M creates a matrix containing ones at the indices specified
by Aℓ and zeros elsewhere. The actions should be chosen to
maximize information gain with respect to the tissue state,
following the objective described in Section II-B. Starting with
the expected information gain objective provided in (2), and
following Van Sloun [6], we derive our action selection policy,
substituting in the likelihood function specified in (8):

I(xt;yt | Aℓ,y<t) = H(yt | Aℓ,y<t)−H(yt | xt, A
ℓ,y<t)

= H(yt | Aℓ,y<t)−H(n). (10)

The second entropy term H(yt | xt, A
ℓ) is the entropy of

our likelihood function, whose only source of uncertainty is
the additive noise n. H(n) then drops out when we take the
argmax with respect to the action Aℓ, yielding the following
objective:

argmax
ℓ

I(xt;yt | Aℓ,y<t) = argmax
ℓ

H(yt | Aℓ,y<t).

(11)
The remaining entropy values for each line measurement
H(yt | Aℓ, y<t) can be decomposed into a sum of pixel-
wise entropy values by modeling the pixels as independent
variables. Given that pixels masked by Aℓ have zero entropy,
the measurement entropy can be computed as a function of
pixel entropies in xt, where xt[i] denotes the ith pixel of xt:

H(yt | Aℓ, y<t) =
∑
i∈Aℓ

H(xt[i] | Aℓ,y<t) (12)
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In practice, we first compute a pixel-wise entropy map in
the data domain xt, Ĥ = [Ĥ[0], . . . , Ĥ[i], ...Ĥ[N ]]⊤, where
Ĥ[i] = H(xt[i] | Aℓ,y<t). Given Ĥ , we can sum the pixels
corresponding to each action Aℓ in order to get the line-wise
measurement entropies, choosing the maximum entropy line
as the next action. Using the variational entropy approximation
proposed by Hershey et al. [41], the pixel-wise entropy map
Ĥ can be computed by taking the element-wise squared
error between each pair of particles in the belief distribution
{x(i)

t }
Np

i=1, as follows:

Ĥ = −
∑
i

1

Np
log

∑
j

1

Np
exp

[
− (x

(i)
t − x

(j)
t )2

2σ2
x

]
. (13)

Intuitively, this entropy map will have high values in regions
where the images in the belief distribution disagree with
one another, indicating uncertainty. Selecting the maximum
entropy line ℓ from this entropy map then amounts to:

argmax
ℓ

H(yt | Aℓ,y<t) ≈ argmax
ℓ

∑
i∈Aℓ

Ĥ[i]. (14)

We could proceed with the above as our policy, selecting
one line at a time, performing the perception step for the
resulting measurement, and repeating. However, the percep-
tion step requires executing some reverse diffusion steps. If
this perception procedure is slower than the time taken to
acquire the line, then it would bottleneck the frame rate. In
order to prevent this, we propose an approximate algorithm,
called K-Greedy Entropy Minimization. K-Greedy Entropy
Minimization approximates the decrease in entropy that would
result from conditioning on a given measurement using a
radial basis function (RBF) around the measurement location.
This effectively assumes that measuring a line ℓ will provide
information about nearby lines, decreasing exponentially with
distance. The algorithm proceeds by selecting the maximum
entropy line, reweighting the entropies of the neighboring lines
according to the RBF, and repeating, for K total lines. For a
formal presentation of this algorithm, see the action step in
Algorithm 1.

V. EXPERIMENTS

A comprehensive evaluation of the model’s performance is
provided through a series of experiments. First, we test our
method on the Echonet-Dynamic dataset, which is an image
dataset from which we simulate subsampling transmits using a
masking measurement model. Next, we use an in-house dataset
where we can directly subsample the transmit events in the
channel data, and beamform those transmits to independent
lines of pixels. Lastly, we show that our method can also
be applied to 3D echocardiography, where we subsample
elevation planes. We implement our active perception agent
using zea, the cognitive ultrasound toolbox [42].

A. EchoNet-Dynamic

Here we train a diffusion model on the EchoNet-Dynamic
dataset [43]. The EchoNet-Dynamic dataset consists of over
10k echocardiograms. As we do not have access to how

Algorithm 1 Focused Transmit Perception-Action Loop
Require: SeqDiff initial diffusion step τSeqDiff; total

diffusion steps τmax; number of focused transmit loca-
tions L; number of particles Np; number of focused
transmits per frame K; initial transmit indices A1;
diffusion schedule {ατ , στ}τinit

τ=0; guidance weight γ;
posterior variance σ2

x; RBF width w; temporal window
size W .

Ensure: Sequence {x̃t}Tt=1 of reconstructed frames.
1: for t ∈ [1, ..., T ] do
2: yt ← acquire(At) // Acquire measurements
3: Y ← [yt−W , . . . ,yt] // Measurement buffer
4: A← [M(At−W ), . . . ,M(At)] // Mask buffer
5: if t = 1 then
6: τinit = τmax

7: else
8: τinit = τSeqDiff

Perception Step

9: for each i ∈ {1, ..., Np} in parallel do
10: X← [x

(i)
t−W−1, . . . ,x

(i)
t−1]

11: ϵ ∼ N (0, I) // Initial noise
12: Xτinit ← ατinitX+ στinitϵ // Initial samples
13: for τ ∈ [τinit, ..., 0) do
14: ϵ̂← ϵθ(Xτ , σ

2
τ ) // Predict Noise

15: X̂0 ← (Xτ − στ ϵ̂)/ατ // Tweedie Estimate
16: X′

τ−1 ← ατ−1X̂0 + στ−1ϵ̂ // Prior step
17: Xτ−1 ← X′

τ−1 − γ∇Xτ ||Y − A⊙ X̂0||22
18: x

(i)
t ← X0[W ] // Belief distribution

19: x̃t ← x
(1)
t // Choose first as reconstruction

Action Step

20: At+1 ← ∅ // Initialize action set for next transmit

21: Ĥ ← −
∑

i
1
Np

log
∑

j
1
Np

exp

[
− (x

(i)
t −x

(j)
t )2

2σ2
x

]
22: Ĥℓ ←

∑
i∈Aℓ Ĥ[i] // Line-wise entropy

23: for k ∈ [1, . . . ,K] do
24: ℓ∗ ← argmax

ℓ
Ĥℓ // Select max entropy action

25: At+1 ← At+1 ∪Aℓ∗ // Gather selected actions
26: Ĥℓ ← Ĥℓ ∗ − exp

(
− (ℓ−ℓ∗)2

w

)
// Reweight

return {x̃t}Tt=1
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Fig. 2. Reconstruction performance for EchoNet-Dynamic in terms
of PSNR and LPIPS as a function of the number of scanned lines for
various action selection policies. The figure shows a distribution over
the data samples and includes the mean as a gray line.

the data was beamformed or the channel data, we opted to
simulate scan-lines as a column of pixels of the 112×112
images. To that extent, we have converted the dataset from
scan-converted images back to the polar domain. In the pro-
cess, we excluded 2,044 samples because their scan-converted
images were generated using a different method or parameters,
which prevented consistent conversion to the polar format
used for the rest of the dataset. The rest of the data we have
randomly split on the patient level into 6985 train sequences,
500 validation sequences, and 500 test sequences. While we
used the full sequences to train our model, we use 100 frames
per patient for the metrics to ensure every patient gets weighted
equally in the metrics.

The active perception agent will be compared to equispaced
and random subsampling, using the same diffusion model. The
equispaced subsampler ‘rolls’ the selected lines from left to
right, such that over time the full imaging area is measured.
Random sampling means that the selected lines were sampled
from a uniform distribution.

1) Reconstruction quality: Figure 2 shows the reconstruction
quality in terms of peak signal-to-noise ratio (PSNR) and
learned perceptual image patch similarity (LPIPS) as distri-
butions over all the patients in the test dataset. It can be
seen that active perception subsampling outperforms the other
subsampling strategies, especially for lower subsampling rates.
For 7 out of 112 lines, which is just over 6% of the image,
the agent still achieves a PSNR of 23.23 on average, which
consists of a 5.8% improvement over random sampling and
an impressive 16.3% improvement over equispaced sampling.

The qualitative results are shown in Figure 3. Here, the 20th
frame in four random sequences is used for three random
patients in the test data. We show the acquired lines, the
reconstruction, the entropy of the posterior samples, and the
fully observed target images. The reconstructions are visually
very similar to the targets, while using only 7 out of 112 scan-
lines.

Acquisitions Reconstruction Entropy Target

Fig. 3. Qualitative results on the EchoNet-Dynamic dataset. The figure
shows the acquisitions and reconstructions for 7 / 112 lines compared to
the target. Additionally shows the posterior entropy, which drives action
selection.
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Fig. 4. Segmentation performance in terms of DICE of EchoNet-
Dynamic on subsampled images for various action selection policies.
The figure shows a distribution over the data samples and includes the
mean as a gray line.

2) Left ventricle segmentation: A common parameter ex-
tracted from an echocardiogram is the ejection fraction, which
measures the amount of blood pumped out of the heart’s
left ventricle with each heartbeat. The EchoNet-Dynamic
model [43] can segment the left ventricle with high accuracy.
In this experiment, we will evaluate how the subsampled
reconstructions affect the ability to segment the left ventricle.
We will use DICE to compare the segmentations of the
subsampled images and the fully observed images. We exclude
failure cases from the fully observed image sequences in
which the segmentation model generates multiple disconnected
components in at least five consecutive frames. Figure 4 shows
that the active perception agent consistently produces the
best left ventricle segmentations compared to equispaced and
random subsampling. The performance for 2 out of 112 still
reaches a DICE of 0.91 on average.

3) Robustness across patients: An essential feature of any
image reconstruction method in medical imaging is robustness
against outliers, ensuring that the performance is consistent
across patients. In order to evaluate this in our approach, we
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Fig. 5. Reconstruction quality (PSNR) plotted against patient ejection
fraction. The lack of correlation indicates that reconstruction perfor-
mance is consistent across varying ejection fractions, suggesting no
bias against outlier patients.
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function of the diffusion steps, i.e., the acceleration. The reconstruction
quality was computed for a single sequence with active perception and
a subsampling rate of 25%. The error bars show the standard error over
the frames.

ran active perception on the first 100 frames of each of the
500 sequences in the unseen EchoNet-Dynamic test set, with
a measurement budget of 14 lines per frame. In Figure 5, we
plot the reconstruction quality as measured by PSNR against
the ejection fraction of each patient, examining the correlation
between the two. Figure 5 shows that the reconstruction quality
is independent of the patient’s ejection fraction, indicating a
lack of bias against outlier patients.

4) Inference speed: As mentioned before, we employ Se-
qDiff [40], which not only improves temporal consistency
of posterior samples, it also massively reduces the required
number of function evaluations for sequential signals. Figure 6
shows the relation of the number of diffusion steps to the
reconstruction quality in terms of PSNR for regular and
SeqDiff, which motivates employing SeqDiff for enhanced
reconstruction quality and speed. To improve inference speed

TABLE I
INFERENCE SPEED OPTIMIZATIONS COMPUTED ON THE RTX 2080 TI

GPU (NVIDIA, SANTA CLARA, CA, USA) FOR 112×112 PIXELS.

Frame
Optimization Time [ms] Freq. [Hz]

Unoptimized (500 steps) 3868 0.26
+ SeqDiff [40] (25 steps) 365.2 2.74
+ Just-in-time compilation 151.6 6.6
+ Parallel posterior sampling
(multi-gpu)

80.56 12.41

+ Mixed precision (float16) 61.67 16.22

All (on 1x Nvidia H100) 24.02 41.64

Frame acquisition (28 lines) 5.46 183.2

further, we applied a group of optimizations as shown in
Table I. First, we chose 25 SeqDiff steps as a good balance
between reconstruction quality and inference speed. Then we
applied just-in-time compilation using the JAX library [44].
Furthermore, we parallelized the computation of the posterior
samples across multiple GPUs when needed. Finally, the
diffusion model, trained in 32-bit floating point precision,
can be run in mixed precision using 16 bits. When these
optimizations are applied on a single H100 GPU (NVIDIA,
Santa Clara, CA, USA) from 2023, the active perception agent
can be run with over 41 Hz.

B. In-house echocardiograms
The in-house dataset consists of 90 focused transmits, which

were interleaved with 11 diverging transmits for comparison.
All subjects in this dataset provided informed consent at the
time of data collection, and the study was approved by the
local Institutional Review Board. We apply active perception
by subsampling certain transmit events from the (fundamental)
channel data and independently beamforming only those trans-
mit events to columns of pixels, giving us yt. The pretrained
prior will be used to generate reconstructions x̃t.

To demonstrate the effectiveness of our method, we compute
the gCNR metric between the ventricle and the myocardium
as well as between the ventricle and the valve. The gCNR is
calculated relative to the fully sampled focused acquisition,
which allows us to compare active perception to diverging
waves for the same number of transmits.

Figure 7 shows the gCNR over time between the valve
and the ventricle for two subjects. It can be seen that active
perception almost always outperforms diverging waves. Active
perception generally has slightly higher gCNR compared to fo-
cused transmits, while for diverging waves it is slightly lower.
In Figure 8 we show the distribution of gCNR over the frames
between the myocardium and ventricle for three subjects. This
highlights again that active perception outperforms diverging
waves for all subjects, and shows fewer outliers.

The qualitative results are shown in Figure 9. Here, we
see the fully sampled focused and diverging waves scans,
combined with the acquired focused lines (11 out of 90)
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between the myocardium and the ventricle. Both active perception
and diverging use 11 transmits. The figure shows a distribution over the
frames and includes the mean as gray line.

and the reconstruction using our method. Even though the
diffusion model was trained on a different dataset, the method
still reconstructs well using limited measurements. For the
same number of transmits as diverging waves, it shows certain
details, such as the valve, more clearly.

C. 3D echocardiograms
In this section, we apply active perception to 3D echocar-

diography. Following Stevens et al. [45], we consider a mea-
surement model in which the elevation dimension is sparsely
sampled, leading to a small set of acquired focused elevation
planes from which the full volume must be recovered. Building
on the reconstruction model implemented by Stevens et al., we
too train a DM on 2D slices taken along the axial (ax) and
elevation (el) axes, but we extend this model in the temporal
direction as with our EchoNet model described in Section IV.

Focused (90) Acquisitions (11/90)

Diverging (11) Reconstruction (11/90)

Fig. 9. Qualitative results on the in-house echocardiograms. On
the left, the figure shows a focused acquisition that was interleaved
with a diverging wave acquisition. On the right, the acquisitions and
reconstructions are shown for 11/90 focused transmits. All images were
112×112 pixels prior to scan conversion.

Our prior is therefore approximating the joint distribution p(X)
where X ∈ RNax×Nel×W . The DM was trained on samples of
size Nax = 400, Nel = 48, and W = 3. The dataset consists
of 100 in-vivo volume sequences across 16 patients, acquired
using a Philips EPIQ scanner with an X5-1C matrix probe. A
set of 7 volume sequences across 3 patients is held out for
testing. For posterior sampling, a guidance weight of γ = 3
was used, with Np = 4, τmax = 500, and τSeqDiff = 450, and
initial planes A1 selected uniformly at random.

In order to perform the action step on 3D volumes, the K-
Greedy Entropy Minimization algorithm was modified to first
average the entropy map across azimuthal angles to produce a
2D entropy map along the axial and elevation axes. Given this
2D entropy map, the algorithm proceeds as in the 2D case,
selecting a series of lines, now representing elevation planes,
aiming to cover as much entropy as possible.

As with the experiments on EchoNet-Dynamic, we bench-
marked reconstructions created with active perception against
those created with baseline sampling strategies, with PSNR
and LPIPS results plotted in Figure 10. Across the sub-
sampling rates, it is clear that employing active perception
results in more faithful reconstructions, particularly with more
aggressive subsampling. The distributions of results are also
more unimodal when using active perception, indicating a
more stable performance across patients and volumes. In
Figure 11, we provide qualitative examples in the form of
bi-plane plots of volume reconstructions from 6/48 elevation
planes, at the 4th frame in each sequence.

VI. DISCUSSION

It is clear throughout the results provided in Section V
that the active perception strategy outperforms the equispaced
and random baseline strategies. The degree of improvement
varies across the experiments. In Section V-A, our results on
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the 2D EchoNet-Dynamic dataset show significant benefits to
using active perception, achieving similar reconstruction per-
formance with only half the sampling budget of the baselines.
Future work towards improving performance in the 2D regime
might develop approaches to generative modeling that can
model longer temporal context windows without sacrificing
inference speed, leading to improvements in quality even with
very low sampling budgets.

In our experiments on 3D data in Section V-C, we also find
that active perception outperforms fixed sampling strategies
across a range of sampling budgets, achieving a better trade-
off between volume rate and reconstruction accuracy than
prior works. These encouraging preliminary results highlight
opportunities for further enhancement through improvements
in key areas. In particular, training on a substantially larger
3D dataset (e.g., millions of volumes) would likely improve
the model’s reconstruction quality and the informativeness

of our derived uncertainty estimates. Furthermore, acquiring
data with focusing in both the elevation and azimuthal direc-
tions would significantly enlarge the action space and allow
for more targeted, information-efficient acquisition. Together,
these enhancements have the potential to significantly boost
the effectiveness of active perception in 3D ultrasound.

In our experiment using in-house echocardiograms, we
chose line-by-line beamforming, although retrospective trans-
mit beamforming (RTBF) could potentially yield higher-
quality images. However, with RTBF, the measurement model
Aℓ becomes more challenging and no longer corresponds to an
inpainting task. Future work could explore to better leverage
the image quality benefits of RTBF.

To fully leverage active perception, the algorithm must
operate in real-time with the frame acquisition. Given an
imaging depth of 15 cm and a typical sound speed of 1540 m/s
(common in echocardiography), each scan-line requires 195
µs. Acquiring 28 scan-lines results in a physical frame acqui-
sition time of 5.46 ms. Thus, to achieve real-time performance,
the algorithm still requires an approximate 4× speedup.

Our experiment indicates that our method does not show
bias against outlier patients when reconstruction quality is
compared to ejection fraction. While further experiments could
enhance our confidence in the method’s robustness, this exper-
iment serves as promising evidence that the model performs
well across patient subgroups.

VII. CONCLUSION

We proposed a patient-adaptive focused transmit scheme
that reduces the number of acquisitions needed for a high-
quality ultrasound image by actively selecting the most
informative measurements. Our method leverages posterior
sampling with a temporal diffusion model and designs new
measurements where the approximated posterior shows the
most entropy. We have shown to outperform baselines on
the 2D EchoNet-Dynamic dataset and a 3D Philips dataset,
especially in cases with very little focused transmits. We
have shown that active perception with focused transmits has
improved gCNR compared to diverging waves with the same
number of transmits. The proposed method did not show bias
against outlier patients and showed that ejection fraction can
still be accurately determined with only 2% of the transmits.
The method can be run in real-time at over 40 Hz on GPU
accelerators from 2023.
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