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ABSTRACT

Wireless and wearable ultrasound devices promise to en-
able continuous ultrasound monitoring, but power consump-
tion and data throughput remain critical challenges. Re-
ducing the number of transmit events per second directly
impacts both. We propose a task-based adaptive trans-
mit beamforming method, formulated as a Bayesian ac-
tive perception problem, that adaptively chooses where to
scan in order to gain information about downstream quan-
titative measurements, avoiding redundant transmit events.
Our proposed Task-Based Information Gain (TBIG) strat-
egy applies to any differentiable downstream task func-
tion. When applied to recovering ventricular dimensions
from echocardiograms, TBIG recovers accurate results us-
ing fewer than 2% of scan lines typically used, showing
potential for large reductions in the power usage and data
rates necessary for monitoring. Code is available at https:
//github.com/tue-bmd/task-based-ulsa.

Index Terms— Transmit beamforming, active percep-
tion, subsampling, cognitive ultrasound

1. INTRODUCTION

Ultrasound is a popular modality for medical imaging, offer-
ing high temporal resolution, cost-effectiveness, and versatil-
ity [1]. Another notable advantage is portability, with recent
research showing promising results for wireless and wearable
ultrasound technology [2, 3], for example, a wearable ultra-
sound patch used for continuous monitoring at the ICU. The
past years have shown great development in ultrasound patch
hardware [4], including electronics miniaturization and skin
adhesive materials. Yet, power consumption and data com-
munication bottlenecks remain important challenges for long-
term monitoring [3]. These, in turn, are strongly dependent
on the number of transmit events per second (pulse repeti-
tion interval), with more events typically yielding higher im-
age quality at the expense of the aforementioned energy and
communication bottlenecks. Reducing these while retaining
performance can be achieved via smart acquisition strategies
and powerful reconstruction algorithms [5]. We note further
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that while a typical ultrasound exam involves acquiring im-
ages of the anatomy, the aim in continuous monitoring is to
track some quantitative parameters of the anatomy. In this pa-
per, we leverage this fact to develop an algorithm that adap-
tively steers the ultrasound transmit beam to image only parts
of the anatomy that contain information about a quantitative
parameter of interest, Dt. In this way, we directly reduce the
required number of transmit events, thereby reducing power
usage and data rates, while acquiring all relevant information
for accurate estimation of Dt.

We model this as a Bayesian active perception problem
[6], wherein the ultrasound probe becomes a sensing agent
that tracks a probability distribution representing its beliefs
about the state of Dt over time. It is active in the sense
that it chooses which scan lines to acquire in order to mini-
mize its own uncertainty about Dt. The agent does this in an
iterative fashion, alternating between action and perception
in what is referred to as a perception-action loop. We refer
to this process as task-based adaptive transmit beamforming,
given that transmit pattern is optimized with respect to some
downstream measurement task, with the sole criterion for the
measurement task being that it is a differentiable function of
the ultrasound image. Our contributions are summarized as
follows:

• We derive and implement a novel perception-action
loop that drives generic task-based transmit beamform-
ing strategies to recover quantitative parameters with
minimal transmit events.

• We evaluate our model using measurements quantify-
ing ventricular hypertrophy produced by the EchoNet-
LVH model [7], showing that our algorithm can recover
accurate estimates of the measurement signal using a
small fraction (∼2%) of the scan lines typically used
for imaging.

2. RELATED WORK

A related research direction uses compressed sensing to re-
duce the data rates required for ultrasound imaging [8]. A
number of these works use supervised machine learning
methods to recover beamformed images from subsampled
channel data using fixed or random subsampling strategies
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Fig. 1: Diagram illustrating single iteration of the task-based perception-action loop using EchoNetLVH segmentation for the
downstream task. 1 Generate a set of posterior samples from the sparse acquisition using Diffusion Posterior Sampling (DPS).
2 Pass each posterior sample x

(i)
t through the downstream task model f to produce samples from the downstream task

distribution. 3 Compute the Jacobian matrix using each of the posterior samples as inputs. 4 Average those Jacobian
matrices and multiply them with the pixel-wise variance of the input images to produce the downstream task saliency map. 5
Apply K-Greedy Minimization to select K scan line locations for the next acquisition.

that are independent of the data, learning only the reconstruc-
tion model [9, 10]. Huijben et al. [11] propose a method
for learning both the sampling and reconstruction models in
an end-to-end manner, where the reconstruction model can
be some downstream function of the fully-sampled image.
Due to the supervised nature of these methods, however,
they need to be trained on datasets consisting of the target
subsampling rates and downstream tasks, effectively requir-
ing a re-training of any learned downstream task model, and
making them susceptible to out-of-distribution errors if the
subsampling rate or task change at test time. Furthermore,
the black-box nature of both the sampling policy limits the
explainability of the resulting subsampling strategies. An al-
ternative approach is that of cognitive ultrasound [6], where
acquisition is driven by active perception In this paradigm,
the acquisition process is formulated as a perception–action
loop, in which beamforming or sampling decisions are chosen
to minimize uncertainty about a latent parameter of interest,
typically using an explicit observation model for perception,
and a white-box action selection function, enhancing inter-
pretability. Federici et al. [12] exemplify this approach by
designing an active perception algorithm for adaptive beam
steering to track the fetal heart and estimate heart rate from
power Doppler observations. While the objective is similar
to ours – recovering a downstream measurement – their ob-
servation model is tailored to Doppler acquisitions and is not
applicable to tasks defined on B-mode images. Van Nierop
et al. [5] propose a cognitive beamforming algorithm that
adaptively selects transmit patterns to minimize uncertainty
about the reconstructed B-mode image, leveraging state of

the art generative image models to implement perception on
images. In this work, we build upon the cognitive ultrasound
framework introduced by van Nierop et al., but move beyond
image fidelity as the sole target, generalizing the approach
to downstream quantification functions defined on B-mode
images. In our experiments, we benchmark against their
method, dubbed General Information Gain (GIG).

3. METHOD

In this section, we derive a novel perception-action loop for
task-based transmit beamforming, where the goal is ulti-
mately to minimize uncertainty about Dt. We first introduce
a way to quantify that uncertainty, which we show can be
decomposed into a sum over a saliency map defined in the
image domain, identifying the degree to which each pixel
in the image space Xt contributes to the uncertainty in Dt,
thereby indicating tissue locations that should be targeted in
the next transmit event. Fig. 1 provides a visual overview.

3.1. Perception

The goal of the perception step is to infer a probability dis-
tribution over possible values for Dt given the scan lines ac-
quired so far. Our perception step closely follows that of van
Nierop et al. [5], implementing Bayesian inference via the
Diffusion Posterior Sampling (DPS) algorithm [13], which
uses a diffusion model [14] to generate samples from the pos-
terior distribution over fully-observed images given partial
observations of recent frames xt ∼ p(Xt | y≤t). Once a



set of posterior samples {x(i)
t }Np

i=1 has been generated at time
t, the downstream task distribution Dt | y≤t is approximated
by a set of samples {d(i)

t = f(x
(i)
t )}Np

i=1 produced by pass-
ing each posterior image sample through the downstream task
model f .

3.2. Action

In order to drive action selection, we first quantify the un-
certainty U(Dt) in the state of Dt using the scalar quantity
E
[
||Dt − E[Dt]||22

]
= tr(CD

t ) measuring the expected Eu-
clidean distance of the downstream task variable Dt from
its mean, with CD

t being the covariance of Dt|y≤t. Then,
by approximating the downstream task function f with a
first-order Taylor expansion, we have that CD ≈ JCXJ⊤,
where J is the Jacobian matrix of f with reference point
X ′

t ∼ p(Xt | y≤t), Xt and X ′
t are independent random

variables sampled from the posterior, and CX
t is the posterior

covariance of the images Xt | y≤t. We use a random variable
as the reference point to ensure that the Taylor expansion is
computed at valid input points, rather than, for example, the
posterior mean E [Xt | y≤t], which may be off-manifold and
out-of-distribution for the downstream task model. If we ap-
proximate CX

t as diagonal, we can then show that U(Dt) can
be computed as a sum of saliency-weighted variances from
the pixels in the input image Xt:

U(Dt) = E
[
||Dt − E[Dt]||22

]
= tr(CD)

≈ tr(JCXJ⊤)

= tr(J⊤JCX) (cyclic property of trace)

= tr(GCX) (G := J⊤J)

=
∑
i

Gi,iσ
2
i (σ2

i := CX
i,i) (1)

This decomposition therefore becomes a sum of pixel-wise
variances in Xt, denoted σ2

i , weighted by diagonal entries of
the Gram matrix Gi,i. Recall now that the Jacobian matrix is a
function of the random variable X ′

t. This means that U(Dt),
is also a random variable that is a function of X ′

t. In order
to get a scalar objective to optimize, we therefore take the
expected value of U(Dt), denoted Ū(Dt), employing the law
of the unconscious statistician (LOTUS) [15]:

Ū(Dt) = EU(Dt) [U(Dt)]

= EX′
t
[U(Dt)] (LOTUS)

= EX′
t

[
tr(GCX)

]
= tr(EX′

t
[G]CX) ([16])

=
∑
i

EX′
t
[Gi,i]σ

2
i

≈ 1

N

∑
i

∑
j

Gi,i

∣∣
x=x(j)σ

2
i (Monte Carlo) (2)

In other words, we average the Jacobian matrices computed
with a set of reference points {x(j)}Np

j=1. In practice, we can
also estimate σ2

i as the empirical variance from the same set of
samples. The diagonal of G then contains the L2-norms of the
columns of this averaged Jacobian, intuitively quantifying the
overall impact that the ith input pixel in Xt has in determining
the value of Dt.

Our goal is then to choose a set of scan line locations
At for the next transmit event that will minimize Ū(Dt).
The focusing angles affect Ū(Dt) via σ2

i , specifically in
that observing the ith pixel eliminates its variance, setting
σ2
i = 0. Along with this effect, the generative perception

model may resolve uncertainty in other pixels whose val-
ues can be inferred from the new observation, and certain
other pixel variances may increase due to unpredictable tem-
poral dynamics. Accounting for the entire impact of all
candidate measurement actions on Ū(Dt) is therefore com-
putationally challenging, potentially requiring the agent to
simulate its perception step for the measurements resulting
from each possible choice of At. Instead, we opt for an
approximate greedy algorithm, K-Greedy Minimization, in-
troduced by van Nierop et al. [5], using the saliency map
St = [EX′

t
[G1,1]σ

2
1 , . . . ,EX′

t
[Gi,i]σ

2
i , . . . ,EX′

t
[GN,N ]σ2

N ]
as the input, rather than a pixel-wise entropy map. The ap-
plication of K-Greedy Minimization then returns a set of K
scan line locations to be transmitted at time t+1, completing
the action step.

4. RESULTS

In order to evaluate the performance of our algorithm in
a practical setting, we apply it to the task of recovering
measurements of heart dimensions typically taken from the
parasternal long-axis (PLAX) view in echocardiography; in
particular, the Left Ventricular Inner Diameter (LVID). We
use the EchoNetLVH model [7] to produce heatmaps for the
location of each of the measurement anchor points, with the
center of mass of each heatmap identifying its anchor point,
and the Euclidean distance between anchor points produc-
ing the eventual measurement. The measurement process
producing y≤t is simulated using a masking operation, and
a diffusion model trained over sequences of 3 frames from
the EchoNetLVH dataset is used for the perception step, fol-
lowing the architecture of van Nierop et al. [5]. This was
implemented using the zea python package [17].

We compare our perception-action loop introduced in
Section 3, Task-Based Information Gain (TBIG), to the
perception-action loop introduced by van Nierop et al. [5],
General Information Gain (GIG). The perception model
in both methods uses a SeqDiff [18] initialization step of
τSeqDiff = 50, with a total of 500 diffusion steps. The aim of
the experiments is to evaluate whether explicitly optimizing
the selected transmit angles for a downstream task results in
a significantly improved estimate of the downstream param-
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Fig. 2: (a) shows a qualitative comparison of measurement signal recovery for three patients using (i) TBIG and (ii) GIG
sampling strategies with 5/256 scan lines. The mean absolute error (MAE) between the target and reconstruction is provided at
the top left. The uncertainty for each reconstruction is quantified as the standard deviation of the measurement values estimated
from the samples in the belief set computed by applying f to {x(i)

t }Np

i=0 for both methods. (b) shows a sample-wise error
comparison for each patient in the evaluation set, where it is clear that TBIG almost always outperforms GIG.
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Fig. 3: The distribution of MAE scores between target and
reconstructed Left Ventricular Inner Diameter (LVID) time
series for the first 100 frames from 50 patients from the
EchoNetLVH validation set for both TBIG and GIG strate-
gies.

eters of interest. We compare the two strategies qualitatively
and quantitatively in terms of the MAE between the target
signal, acquired by applying f to the fully-sampled B-mode
images, and the reconstructed signal, acquired by applying
the EchoNetLVH model to {x(i)

t }Np

i=1, averaging the result-
ing Np heatmaps for each anchor point, and extracting the
measurements as described above.

In Fig. 2 we compare the downstream measurement sig-

nals recovered by TBIG and GIG to the target signals, using a
budget of 5/256 scan lines. It is clear that the TBIG objective
recovers a significantly more accurate estimate of the target
signal in almost all cases. In Fig. 3, we report the distribu-
tions of the MAE evaluated on sequences of 100 frames from
a set of 50 unseen patients from the EchoNetLVH validation
set, using a number of different subsampling rates (1, 3, and
5 lines out of a total of 256).

5. DISCUSSION & CONCLUSION

It is clear from the results that Task-Based Information Gain
(TBIG) outperforms General Information Gain (GIG) across
all measurement targets and subsampling rates. We observe
also that TBIG using only 3 lines outperforms GIG using 5,
indicating the potential for a significant reduction in data rate
relative to GIG without sacrificing quality. We also highlight
that the measurement signals have been recovered here us-
ing only a tiny fraction of the scan lines typically used (less
than 2%), indicating potential for use in continuous monitor-
ing and other wireless ultrasound technologies. A promising
avenue for future work is therefore to apply this method in a
continuous monitoring setting, using data from a wearable ul-
trasound patch, and evaluate its effect on battery life and data
throughput.
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