
Sequential Posterior Sampling with Diffusion Models
Tristan S.W. Stevens⋆, Oisı́n Nolan⋆, Jean-Luc Robert†, Ruud J.G. van Sloun⋆

⋆Dept. of Electrical Engineering, Eindhoven University of Technology, The Netherlands
†Philips Research North America, Cambridge MA, USA

Abstract—Diffusion models have quickly risen in popularity
for their ability to model complex distributions and perform
effective posterior sampling. Unfortunately, the iterative nature of
these generative models makes them computationally expensive
and unsuitable for real-time sequential inverse problems such as
ultrasound imaging. Considering the strong temporal structure
across sequences of frames, we propose a novel approach that
models the transition dynamics to improve the efficiency of
sequential diffusion posterior sampling in conditional image
synthesis. Through modeling sequence data using a video vision
transformer (ViViT) transition model based on previous diffusion
outputs, we can initialize the reverse diffusion trajectory at a lower
noise scale, greatly reducing the number of iterations required for
convergence. We demonstrate the effectiveness of our approach
on a real-world dataset of high frame rate cardiac ultrasound
images and show that it achieves the same performance as a full
diffusion trajectory while accelerating inference 25×, enabling
real-time posterior sampling. Furthermore, we show that the
addition of a transition model improves the PSNR up to 8% in
cases with severe motion. Our method opens up new possibilities
for real-time applications of diffusion models in imaging and
other domains requiring real-time inference.

Index Terms—temporal diffusion prior, generative models,
sequential data, cardiac ultrasound, posterior sampling

I. INTRODUCTION

Deep generative models are celebrated for their ability
to model complex distributions. Their use in inverse prob-
lem solving has unlocked new applications involving high-
dimensional data. Diffusion Models (DMs) are particularly
attractive generative models due to their interpretable denoising
score matching objective and stable sampling procedure.
Despite these benefits, the iterative nature of sampling from
prior and posterior distributions with diffusion models inhibits
their use in demanding real-time imaging applications with
high data-rates such as cardiac ultrasound [1], [2] or automotive
radar [3], [4].

There have been several works on accelerating DMs. These
can be roughly categorized in two lines of research. On the
training end, [5] proposes a progressive distillation method that
augments the training of the DMs with a student-teacher model
setup. In doing this, they are able to drastically reduce the
number of sampling steps. Some methods aim to execute the the
diffusion process in a reduced space to accelerate the diffusion
process. While [6] restricts diffusion through projections onto
subspaces, [7] and [8] run the diffusion in the latent space. On
the other side of the spectrum, the sampling procedure itself
can be altered. Inspired by momentum methods in sampling,
[9] introduces a momentum sampler for DMs, which leads
to increased sample quality with fewer function evaluations.

More related to this work is a sampling strategy known as
Come-Closer-Diffuse-Faster (CCDF) [10], which leverages a
neural network based estimate of the posterior mean to reduce
the number of reverse diffusion steps needed. Nonetheless,
CCDF and the other aforementioned methods do not exploit
the temporal structure across frames in sequential data which
we demonstrate improves the solvability of inverse problems.

Video diffusion models extent on previous works by training
a diffusion prior jointly on a sequence of frames [11]. While
they have been extensively explored for tasks such as text-to-
video [12] and image-to-video [13] generation, there has been
limited research on their application to video reconstruction
tasks. Some works have investigated the use of DMs for time-
series; [14], for example, proposes a conditional diffusion
model for time series forecasting. However, these works do not
consider the temporal structure across frames for accelerating
the sampling process, rendering them too slow for real-time
inference.

In this work, we propose a novel autoregressive method for
initializing successive diffusion trajectories for reconstruction
of sequence data. We provide two flavors named SeqDiff and
SeqDiff+ which both leverage the temporal correlation across
frames, by using the diffusion model output of previous frames
as a starting point for the current posterior sampling procedure.
SeqDiff straightforwardly initializes with the previous frame,
which we show is often reasonable given high frame rates.
Expanding on this idea, SeqDiff+ specifically models the
transition between subsequent frames using a Video Vision
Transformer (ViViT) [15] for a more accurate initialization,
mitigating the effect of severe motion across frames.

To evaluate our method, we turn to echocardiography, which
is the imaging of the heart using medical ultrasound. The real-
time nature and high data-rates resulting from this sensory
data encapsulate the challenges targeted by the proposed
method. DMs have been effectively applied to cardiac ultra-
sound, from removing multipath scattering (dehazing) [2] to
segmentation [1] and beyond. However, accurate and fast image
reconstruction using DMs remains a challenge.

Our main contributions can be summarized as follows:

• We propose autoregressive tracking of posterior samples
across the noise manifolds in diffusion models to acceler-
ate reconstruction of sequential data.

• We provide two variants, SeqDiff and SeqDiff+, both of
which rely on previous diffusion posterior estimates for
initialization. SeqDiff+ further leverages a Video Vision
Transformer to model the transitions between frames.



• We evaluate our method on compressed sensing echocar-
diography, showing that our method improves image
quality while accelerating the sampling process.

The remainder of this paper is organized as follows. In
Section II we provide background on both posterior sampling
with DMs as well as sequence modeling. In Section III
we proceed with introduction of our methods, which are
subsequently evaluated and concluded in sections IV and V,
respectively.

II. BACKGROUND

A. Diffusion Models

Diffusion Models (DMs) are a class of probabilistic gener-
ative models that learn the reversal of a forward corruption
process, which add progressively increasing levels of Gaussian
noise until the data x0 ≡ x ∼ p(x) is transformed into a base
distribution xT ∼ N (0, I). The continuous forward process
x0 → xτ → xT , with diffusion time τ ∈ [0, T ] can be formally
described by a variance preserving stochastic differential
equation (VP-SDE) [16] dx = − 1

2β(τ)xdτ +
√
β(τ)dw,

where β(τ) is the noise schedule, and w a standard Wiener
process. Diffused samples from p(xτ |x0) = N (ατx0, σ

2
τ I)

can be directly generated by the following parameterization:

xτ = ατx0 + στ ϵ, ϵ ∈ N (0, I), (1)

where στ = 1 − e−
∫ τ
0

β(s)ds and ατ =
√
1− σ2

τ are the
noise and signal rates, respectively. The objective of generative
models is to generate samples from the distribution of interest
given samples from some tractable distribution. Accordingly, a
corresponding reverse-time SDE can be constructed to achieve
this:

dx =

[
−1

2
β(τ)x− β(τ)∇xτ log p(xτ )

]
dτ +

√
β(τ)dw̄,

(2)
where dτ and dw̄ are now processes running backwards in
diffusion time. From this reverse SDE the gradient of the log-
likelihood of the data arises ∇x log pt(x), also known as the
score function which provides information on how to adjust
xτ to move it towards x0 and can be modeled using neural
network parameters θ leading to the following approximation:
sθ(xτ , τ) ≈ ∇xτ log p(xτ ). As shown in [17], the score model
sθ can be learned with the denoising score matching objective

L(θ) = Ex0∼p(x),τ∼U [0,T ]

[
∥sθ(xτ , τ)−∇xτ

log p(xτ |x0)∥22
]
,

(3)
which essentially trains a conditional denoising network at
each diffusion timestep τ . Finally, discretization of continuous
process (2) into N equispaced diffusion steps is required to
numerically approximate the reverse diffusion process and
sample from the target distribution.

B. Posterior Sampling

Shifting our focus to inverse problems solving, which seeks
to retrieve underlying signals x from corrupted observations
y, we can define a general linear forward model as follows:

y = Ax+ n, y,n ∈ Rm,x ∈ Rn,A ∈ Rm×n. (4)

DMs can be extended to perform posterior sampling p(x0|y),
through substitution of a conditional score into (2), which
can be factorized into the pretrained score model and
a noise perturbed likelihood score through Bayes’ rule:
∇xτ

log p(x0|y) ≈ sθ(xτ , τ) + ∇xτ
log p(y|xτ ). The in-

tractability of the latter term has lead to several approaches to
approximate it [19], [20]. Among the methods is Diffusion Pos-
terior Sampling (DPS) [18], which approximates the troubling
p(x0|xτ ), which leads to tractability of p(y|xτ ), as follows:

p(x0|xτ ) ≈ E[x0|xτ ] ≈
1

ατ
(xτ + σ2

τsθ(xτ , τ)) (5)

where the first approximation is substitution of the posterior
mean for x0, and the second approximation the learned score
model for the actual unconditional score function.

C. Sequential inverse problems

In this work, we seek to address sequential inverse problems,
also known as dynamic inverse problems [21], which involve re-
constructing from a sequence of time-dependent measurements
yt = Atxt+nt with a clear dependency between xt and xt−1.
To capture the intricate dynamics of temporal data, we look
to sequence modeling which has become a fundamental task
in applications such as speech recognition, natural language
processing, and video analysis. We are interested in predicting
future frames given past observations:

p(xt+1 | xt,xt−1, ...,xt−K), (6)

where K is the context window size. In the context of cardiac
ultrasound this would translate to predicting a future frame
given K past frames. Traditional approaches to modeling
sequences include hidden Markov models (HMMs), recurrent
neural networks (RNNs), amongst which convolutional LSTMs
(ConvLSTMs) [22] which have proven to work well for spatio-
temporal data. More recently, transformer models have excelled
especially in natural language processing tasks through self-
attention mechanisms that capture long-range dependencies.
The Video Vision Transformer (ViViT) [15] extends this
capability to video data by treating a stack of subsequent
frames. Specifically, ViViTs extract non-overlapping, spatio-
temporal tubes (3D patches), also known as tubelet embeddings,
to tokenize the input video and accordingly process using multi-
headed self-attention blocks.

III. METHODS

The temporal correlation across subsequent frames can be
heavily exploited to accelerate sequential posterior sampling
p(xt|yt,xt−K:t−1) using DMs. We propose two techniques
to initialize the reverse diffusion process corresponding to
the current frame based on past observations in an efficient
manner. In other words, given the diffusion posterior samples
x0 of past frames

{
xt
0,x

t−1
0 , ...,xt−K

0

}
we would like to

estimate p(xt+1 | xt−K:t
0 ) such that the number of diffusion

steps necessary is minimized. Since this is again a complex
distribution, we instead estimate p(xt+1

τ ′ | xt−K:t
0 ), and assume

it follows a tractable Gaussian with diagonal covariance. The
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Fig. 1: Geometric representation of the reverse diffusion process and corresponding manifolds Mτ for each diffusion timestep τ .
In (a) a standard conditional reverse diffusion trajectory starting from a Gaussian sample xT ∼ N is shown with DPS as
guidance rule [18]. For initialization of the next frame t+ 1, we propose two different methods SeqDiff and SeqDiff+, depicted
in (b) and (c) respectively. In the first option we initialize the trajectory from a noised version of the Tweedie estimate of the
previous frame, p(xt+1

τ ′ |xt
0) with τ ′ ≪ T . The second option improves upon this by predicting the next frame with x̃t+1

0 ≈ f(·),
accounting for any motion between frames. This leads to the initialization p(xt+1

τ ′ |x̃t+1
0 ), with τ ′SeqDiff+ < τ ′SeqDiff.

Initialization p(xt+1
τ ′ | xt+1

0 )
N ( µ , σ )

Sequence
modeling

Vanilla DPS 0 σ2
T ✗

CCDF ατ ′g(yt+1) σ2
τ ′ ✗

SeqDiff ατ ′xt
0 σ2

τ ′ ∼
SeqDiff+ ατ ′fθ(x

t−K:t
0 ) σ2

τ ′ ✓

TABLE I: Comparison of the different initialization methods
for accelerating reverse diffusion trajectories.

challenge is to estimate the parameters of this distribution,
as well as the diffusion time point τ ′ for which the Gaus-
sian approximation is accurate. We define the initialization
diffusion scale as τ ′ which lies somewhere on the diffusion
timeline 0 < τ ′ ≪ T . Rather than starting each diffusion
trajectory from scratch at τ = T with a Gaussian sample
xT ∼ N (0, σ2

T I), we use an appropriate estimate x̃ based on
past observations which we can diffuse forward up to τ = τ ′.
The initialization of the (shortened) diffusion trajectory then
becomes xτ ′ ∼ N (ατ ′ x̃, σ2

τ ′I). For the discretized case, this
reduces the number of steps to N ′ ≪ N , with N ′ = Nτ ′/T .

A. SeqDiff

One straightforward method of initialization given past past
observations is to directly use the previous diffusion posterior
estimate xt

0 as an estimate for the mean of xt+1. This would
lead to the following diffusion initialization for t+ 1:

xt+1
τ ′ ∼ p(xt+1

τ ′ | xt+1
0 ) ≈ N (ατ ′xt

0, σ
2
τ ′I). (7)

This assumes a simple linear sequential model, which we show
is reasonable in case of high frame rate scenarios where the
temporal correlation across subsequent frames is strong.

B. SeqDiff+

In cases of severe motion or lower frame rates we leverage
a ViViT network fϕ(·) to model the system dynamics and

predict the mean of the next frame for improved initialization.
This allows us to improve on (7), as follows:

xt+1
τ ′ ∼ p(xt+1

τ ′ | xt+1
0 ) ≈ N (ατ ′ x̃t+1

0 , σ2
τ ′I), (8)

where x̃t+1
0 is predicted by the transformer model fϕ, parame-

terized with ϕ, which takes as input a sequence of past posterior
estimates and outputs a prediction of the next frame as follows:

x̃t+1
0 = fϕ(x

t
0,x

t−1
0 , ...,xt−K

0 ). (9)

A full comparison of all diffusion initialization methods is
listed in Table I, and illustrated in Fig. 1

IV. RESULTS

To evaluate our methods, we test conditional diffusion
trajectories (vanilla DPS) with and without SeqDiff and
SeqDiff+ initialization strategies on the EchoNet-Dynamic
dataset [23] with approximately 7000 sequences of around
80 to 300 frames each of which we reserve 100 sequences for
evaluation. We map all images to a polar grid to retrieve the
original scanning lines and resize to 128×128. After inference
the images are scan converted back to cartesian grid for display
and metrics calculation. Subsampling is a compressed sensing
technique frequently used in medical imaging to reduce data
rates [24]–[27]. As a reconstruction task for the diffusion
model we consider a scan-line undersampling task which can
be used in ultrasound imaging to reduce acquisition time and
is essentially subsampling of the image columns. For SeqDiff+
we use a ViViT architecture with context length K = 4, two
transformer layers with 8 heads for encoder and decoder each
and a tublet size of (2, 16, 16). Unless specified otherwise,
results are generated with only N ′ = 4 diffusion steps. In
Fig. 2 a visual comparison of the initialization methods is
shown, with the proposed methods clearly outperforming both
vanilla DPS given the same number of diffusion steps, as
well as full diffusion trajectory with 25× fewer steps. This is
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Fig. 2: Qualitative comparison of Vanilla DPS (for N = 4 and N = 100 steps), and the two proposed initialization methods
SeqDiff and SeqDiff+ for only N ′ = 4 diffusion steps. Target images xt are 80% masked by At to produce observation yt.
Initialization with SeqDiff(+) is able to improve on full diffusion trajectories with 25× speedup.
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Fig. 3: Comparison of SeqDiff(+) performance in PSNR against various motion conditions. (a) For every sample in the test
set. The advantage of using a transition model (SeqDiff+) is most advantageous with high motion (see linear fit m). (b) For
a single sequence of frames. SeqDiff+ is less correlated with the motion, whereas the error of SeqDiff increases with more
movement, emphasizing the importance of the transition model. (c) Best performing N ′ for each initialization method against
motion. SeqDiff+ outperforms the other methods for all motion levels. For lower motion levels, SeqDiff is a valid option.

reflected in the metrics too, as seen in Fig. 4, where SeqDiff+
initialization outperforms its counterpart without transition
model, especially for low N ′. For high N ′ the performance
tapers off as useful past information is forgotten due to the
noise being added. The importance of an accurate transition
model is highlighted in Fig. 3a, Fig. 3b and Fig. 3c which
compare the performance against motion. We observe that
in cases with higher motion it pays off to use the ViViT to
account for the dynamics. Furthermore, based on the amount
of motion, SeqDiff(+) offers a way to determine the optimal
initialization point τ ′ as seen in Fig. 3c.

V. CONCLUSIONS

In this paper, we introduce a novel sequential posterior
sampling approach, coined SeqDiff(+), to accelerate diffusion
models in the context of sequence data. Our method capitalizes
on the temporal structure between subsequent frames which
enables autoregressive sampling based on previous posterior
estimates. Additionally, we adapt a Video Vision Transformer
(ViViT) to model the transition dynamics between frames for
improved initialization of the diffusion process. Our approach
effectively reduces the number of diffusion iterations with
respect to full conditional diffusion trajectories up to 25×,
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Fig. 4: PSNR against number of diffusion steps on sequences
of frames from the test split of EchoNet-Dynamic dataset.
Confidence Interval (CI) is taken over 3 splits with different
masks and seeds. SeqDiff+ shows a notable improvement,
particularly with fewer diffusion steps N ′.

unlocking the use of diffusion models for real-time imaging
applications such as ultrasound imaging. We evaluate our
approach on scan-line undersampling in cardiac ultrasound
frames and show that, especially in cases with severe motion,
the addition of a transition model further improves performance.
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R. J. van Sloun, “Accelerated intravascular ultrasound imaging using
deep reinforcement learning,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2022, pp. 1216–1220.

[27] O. Nolan, T. S. Stevens, W. L. van Nierop, and R. J. van Sloun, “Active
diffusion subsampling,” arXiv preprint arXiv:2406.14388, 2024.

https://proceedings.neurips.cc/paper_files/paper/2022/file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf

	Introduction
	Background
	Diffusion Models
	Posterior Sampling
	Sequential inverse problems

	Methods
	SeqDiff
	SeqDiff+

	Results
	Conclusions
	References

