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Abstract. Echocardiography plays a central role in cardiac imaging,
offering dynamic views of the heart that are essential for diagnosis and
monitoring. However, image quality can be significantly degraded by haze
arising from multipath reverberations, particularly in difficult-to-image
patients. In this work, we propose a semantic-guided, diffusion-based de-
hazing algorithm developed for the MICCAI Dehazing Echocardiography
Challenge (DehazingEcho2025). Our method integrates a pixel-wise noise
model, derived from semantic segmentation of hazy inputs into a diffusion
posterior sampling framework guided by a generative prior trained on
clean ultrasound data. Quantitative evaluation on the challenge dataset
demonstrates strong performance across contrast and fidelity metrics.
Code for the submitted algorithm is available on GitHub.1.
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1 Introduction

Ultrasound is a popular modality for cardiac imaging due to its high tempo-
ral resolution, cost effectiveness, and real-time imaging capabilities, enabling
the detection of a variety of cardiac abnormalities [2]. An ongoing challenge in
echocardiography is that of clutter or haze resulting from multipath reverber-
ations [12,14], which can prevent accurate measurement from B-Mode images.
This has motivated the development dehazing algorithms, which aim to recover
clean images x from hazy input images y.

Recently, a number of dehazing algorithms leveraging deep generative models
(DGMs) have been proposed, using prior knowledge of the clean image distribu-
tion to infer sets of clean images corresponding to observed hazy images. One
such approach involves using Generative Adversarial Networks (GANs) to per-
form domain adaptation, wherein the style of one dataset is transferred to sam-
ples from another [17,9] while retaining structural contents. Other approaches
opt for diffusion models (DMs) [8,13], which are known to represent the state-
of-the-art in image synthesis [6]. One such method, introduced by Stevens et al.,
involves using DMs to learn models of the distributions of both clean images and
haze, which are then used to separate the clean tissue and haze components of
1 https://github.com/tristan-deep/semantic-diffusion-echo-dehazing
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the input hazy image [14]. However, in this work, the signal model employed is
defined on pre-envelope-detected signals, which are in some cases not available.
This motivates the development of diffusion-based dehazing algorithms that op-
erate in the image domain. In this paper, we propose such an algorithm, Seman-
tic Diffusion Posterior Sampling, which first computes a semantic segmentation
map estimating the haze content of each pixel, and then uses the Diffusion Pos-
terior Sampling (DPS) algorithm to generate posterior samples from the clean
image distribution given the hazy measurement. The estimated haze map serves
to control the strength of the conditional guidance during the image generation
process, according more with the measurements in clean regions, and less in hazy
regions.

2 Challenge

This work was developed in the context of the MICCAI Dehazing Echocar-
diography Challenge (DehazingEcho2025)2, which aims to enhance the quality
of transthoracic echocardiographic images acquired from difficult-to-image pa-
tients. The dataset provided for this challenge comprises two subsets: (1) a clean
set of 4,376 frames obtained from 75 easy-to-image subjects, and (2) a noisy set
of 2,324 frames acquired from 40 difficult-to-image subjects. Each image in the
dataset is part of a 60-frame four-chamber view cine-loop.

For quantitative benchmarking, a hidden test set of 536 noisy frames is used
for online evaluation on the Grand Challenge platform [4]. The evaluation pro-
tocol incorporates multiple complementary metrics designed to capture different
aspects of image quality and utility. Specifically:

– Fréchet Inception Distance (FID) assesses perceptual similarity between
denoised and clean images.

– CNR and gCNR quantify contrast between myocardial tissue (septum) and
noise-prone regions (left ventricular).

– Kolmogorov–Smirnov (KS) test measures distributional similarity to as-
sess structure preservation of the septum and noise removal in the ventrical.

– Dice coefficient and Average Surface Distance (ASD) evaluate the
compatibility of denoised images with downstream segmentation tasks, using
a pre-trained universal ultrasound foundation model (USFM) [10] targeting
the left ventricle.

The final score is derived from a weighted aggregation of the above metrics,
balancing denoising performance, structural preservation, and downstream task
impact with respective weights of 5:3:2.

3 Method

The algorithm consists of two primary steps: first, generating a semantic seg-
mentation mask based on the input hazy image, and second, using that mask to
2 https://dehazingecho2025.grand-challenge.org/
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guide a diffusion model towards generating a dehazed image. We frame the task
of dehazing as a Bayesian inverse problem with the following forward model:

y = x+ h, h ∼ N (0,Σ), x ∼ pgenerative model(x) (1)

where y,x,h ∈ Rn denote the hazy measurement, clean image, and residual haze
respectively. The haze is modeled as additive, zero-mean Gaussian noise with a
spatially varying diagonal covariance matrix:

Σ−1 = diag(σ−2
1 , σ−2

2 , . . . , σ−2
n ) = diag(p), (2)

where each variance σ2
i is determined by the pixel-wise semantic segmentation

map p as outlined in Section 3.2. To solve (1), we employ a diffusion prior, which
we detail in the following section.

3.1 Deep generative prior for clean cardiac ultrasound

We start with leveraging a deep generative model (DGM) to model the distribu-
tion p(x) of clean echocardiography images x. Specifically, we train a diffusion
model (DM), and subsequently perform posterior sampling p(x|y) conditioned
on the hazy inputs y.

Training: Diffusion models learn to approximate the gradient of the log-density
(i.e., the score function) of the data distribution by denoising progressively noised
inputs. The training objective is based on denoising score matching (DSM),
which seeks to minimize the discrepancy between predicted and true noise across
different noise levels:

LDSM(θ) = Ex0∼p(x0),ϵ∼N (0,I),τ∼U(0,T )

[
∥ϵθ(xτ , τ)− ϵ∥2

]
, (3)

where xτ = ατx0 + στ ϵ denotes a corrupted version of a sample from our clean
dataset x0 at a continuous noise level τ , with a pre-defined noise schedule, pa-
rameterized by ατ and στ . The model ϵθ(xτ , τ) is trained to predict the noise
component ϵ ∼ N (0, I) from the corrupted input xτ , effectively learning the
score ϵθ(xτ , τ) ≈ −στ∇xτ log p(xτ ). To further improve the perceptual quality
of generated samples (note the FID objective of the challenge in Section 2), we
additionally incorporate a Kernel Inception Distance (KID) loss [3], computed
between generated and real clean images. Unlike FID, KID is unbiased and bet-
ter suited for comparing small datasets. Formally, the KID loss is defined as
the squared maximum mean discrepancy between the feature embeddings of a
pretrained InceptionV3 network of generated and real samples. This encourages
the model to produce samples that align more closely with the distribution of
clean dataset. The total training loss is then given by:

L(θ) = LDSM(θ) + λKID · LKID(θ), (4)

where λKID is a weighting factor controlling the influence of the perceptual
loss. The diffusion model is pre-trained on the publicly available EchoNet-LVH
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dataset [7], and finetuned on the clean partition of the DehazingEcho2025 chal-
lenge dataset. For more details see Table 1.

3.2 Semantic Segmentation

The first step of the algorithm involves generating a segmentation mask from
the hazy image which estimates the haze content of each pixel. This segmen-
tation mask provides a noise level for each pixel, defining a forward model for
Diffusion Posterior Sampling (DPS) [5] wherein high-signal pixels provide strong
guidance, closely matching the measured pixels, and high-noise pixels provide
weak guidance, falling back towards the prior distribution on dehazed images.

In order to construct these semantic segmentation masks, a combination of
learned and classical segmentation methods was used.

– Ventricle and Septum Segmentation: In order to identify the ventricles
and septum, a DeepLabV3+ [11] model was trained on manually annotated
regions of interest corresponding to the septum and ventricle, provided in
the challenge dataset. We denote the resulting masks as v(y) and s(y), iden-
tifying the ventricle and septum from the hazy image y. The DeepLabV3+
model outputs a map of logits, which are thresholded by a parameter θ to
create a binary mask, which is then blurred using a Gaussian kernel with
standard deviation σblur.

– Tissue Segmentation: In order segment regions of tissue, the hazy image
was skeletonized using skimage.morphology.skeletonize3 [16], a function
which implements the thinning algorithm proposed by Zhang et al. [18], map-
ping the hazy input image to thin skeleton tracing the tissue. The skeleton
mask is denoted t(y).

– Fixed pixels: Two bands of pixels, at the top and bottom of the image, are
kept fixed to ensure the preservation of details from the DICOM overlay.

– Background pixels: Any pixel not present in v(y), s(y), or t(y) is consid-
ered a background pixel, b(y).

– Dark pixels: Any pixel for which y < 1e−6 is segmented as a dark pixel,
d(y).

The final mask is then created by taking a weighted sum of these individual
masks, producing the precision vector p populating the diagonal of the precision
matrix Σ−1 used in the DPS forward model:

p = ωb(y) + ωvv(y) + ωs(s(y) + t(y) + d(y)) (5)

Finally, we handle the edge case where the skeleton t(y) crosses the ventricle
v(y), splitting it in two, by setting ωv = 0. An overview of the individual seg-
mentation steps, and the resulting guidance weighting map is shown in Fig. 1.
3 https://scikit-image.org/docs/0.25.x/api/skimage.morphology.html#skimage.

morphology.skeletonize

https://scikit-image.org/docs/0.25.x/api/skimage.morphology.html#skimage.morphology.skeletonize
https://scikit-image.org/docs/0.25.x/api/skimage.morphology.html#skimage.morphology.skeletonize
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Notably, imperfections introduced at one stage, such as over-segmentation or
missed structures, can often be mitigated by complementary information from
other segmentation steps, resulting in a more robust pixel-wise noise estimation.

Ventricle v(y) Septum s(y) Fixed Skeleton t(y) Dark b(y) Guidance d(y)
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Fig. 1. Visualization of the individual components for the semantic segmentation and
the resulting constructed guidance weighting map p for two different patients.

3.3 Semantic Diffusion Posterior Sampling

Sampling from the posterior distribution x0 ∼ p(x0|y) is achieved by initiat-
ing xT as a Gaussian random vector, and then applying an iterative denoising
process that progressively refines the sample across decreasing noise levels as
follows:

1. Estimate the clean image from the current corrupted input:

x̂0 ←
1

ατ
(xτ − στ ϵθ(xτ , τ)) . (6)

2. Guide the sample towards our hazy measurement with the forward model
defined in (1), along with a penalty on a smoothed L1 norm4, parameterized
by β, on the pixels in the ventricle.

x̂0 ← x̂0 −
1

2
∇xτ

(y − x̂0)
⊤Σ−1(y − x̂0)− η∇xτ

|v(y)⊙ x̂0|β . (7)

3. Predict the next corrupted sample at a lower noise level τ ′ < τ :

xτ ′ ← ατ ′ x̂0 + στ ′ϵθ(xτ , τ). (8)

This deterministic denoising process is repeated until τ ′ = 0, yielding a sample
from the clean data distribution, conditioned on hazy measurement y.
4 https://docs.pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html

https://docs.pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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Table 1. Overview of model components, architectures, training/inference settings,
and datasets used.

Model Architecture Inference Training Dataset

Diffusion UNet

N = 480
η = 0.007
ω = 1, ωs = 2
ωv = 0.3
β = 1.6

λKID = 0.05
NKID = 15
ema = 0.999
lrpre = 10−4

lrfine = 10−5

EchoNet-LVH
(pretrain)
DehazingEcho2025
(clean subset, finetune)

Segmentation DeepLabV3+ θ = 0.176
σblur = 4.2

lr = 5e− 4
DehazingEcho2025
(noisy subset w/ ROIs)

3.4 Algorithm details

A summary of the most important parameters used in each component of the
dehazing algorithm is listed in Table 1. Hyperparameters were optimized with
Optuna [1] using a subset of 237 images from the available noisy set that have
corresponding masks. The optimization objective was set to the final score as
specified in Section 2. A plot of the hyperparameter sweep is shown in Fig. 2.
The final scores are slightly underestimated due to the FID’s sensitivity to the
smaller sample size, approximately 2× lower than the online challenge test set.

The algorithm is implemented using Keras 3 with the JAX backend for ac-
celerated inference through JIT compilation. Furthermore, our implementation
heavily relies on zea, a toolbox for cognitive ultrasound imaging [15]5. Code with
the complete algorithm implementation is available on GitHub 1.
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Fig. 2. Hyperparameter optimization of 100 trials for the inference parameters listed
in Table 1, with the challenge’s final score as objective.

5 https://zea.readthedocs.io/

https://zea.readthedocs.io/


Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing 7

H
az

y 
y

D
eh

az
ed

 x
H

az
e 

h

Fig. 3. Hazy echocardiographic images y and their decomposition into dehaze doutputs
x̂ and haze estimates ĥ as a result of the submitted algorithm.
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Fig. 4. Contrast metrics and KS statistics for the dehazed results from the submitted
algorithm. Minimum and maximum obtainable scores as set by the challenge organizers
are marked in red.
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4 Results and discussion

A subset of samples from the DehazingEcho2025 noisy set, and corresponding
dehazed outputs and haze estimates is shown in Fig. 3. A qualitative analysis of
the results is shown in Fig. 4. Both contrast metrics and KS statistics values are
plotted for the 237 images in the noisy set that have corresponding ROI masks.
The reported FID obtained under these settings is 61.3.

One interesting observation is that the hyperparameters yielding the high-
est challenge score did not necessarily produce the best visual quality, suggest-
ing a misalignment between the evaluation metrics and perceptual fidelity of
the dehazed images. For instance, the metrics appear to incentivize an almost
binary contrast between the ventricle and septum, which, while improving nu-
merical scores, leads to a loss of subtle structural nuances. This overly sharp
separation diminishes the natural appearance of the tissue, which clinicians may
find misleading or diagnostically unhelpful. Rather than merely removing haze,
the desired outcome is to reveal underlying tissue structures that were previ-
ously occluded or obscured. While FID partially captures this goal, future work
should explore more perceptually and clinically aligned evaluation metrics that
better reflect meaningful dehazing of echocardiographic images. In the current
approach, the ventricle guidance parameter ωv and haze prior weighting param-
eter η can be increased and decreased, respectively, to reduce the amount of
dehazing in the left ventricle area.

A final observation is that haze reduction is primarily focused on the left
ventricle, driven by both the challenge metrics, centered on septum–ventricle
contrast, and the available labels, which include ROIs only for these two re-
gions. As a result, areas like the right ventricle receive less attention. Extending
the segmentation model to include the right ventricle would allow for more com-
prehensive dehazing.

5 Conclusion

We present a diffusion-based dehazing algorithm guided by semantic segmenta-
tion maps that adaptively modulate the influence of hazy measurements during
posterior sampling. Developed in the context of the MICCAI DehazingEcho2025
challenge, our method achieves strong performance across the contrast and fi-
delity metrics. Preliminary results suggest a potential gap between the exist-
ing challenge metrics and perceptual quality, particularly in preserving subtle
anatomical details. Nonetheless, the challenge has provided a valuable platform
to advance and benchmark dehazing approaches. In particular, our generative
modeling approach is able to effectively reduce haze by leveraging semantic guid-
ance to preserve anatomical details. Future work can focus on improved semantic
segmentation and development of evaluation metrics that better capture percep-
tual quality and clinical relevance.



Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing 9

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
pp. 2623–2631 (2019)

2. Barry, T., Farina, J.M., Chao, C.J., Ayoub, C., Jeong, J., Patel, B.N., Banerjee,
I., Arsanjani, R.: The role of artificial intelligence in echocardiography. Journal of
imaging 9(2), 50 (2023)

3. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans.
In: International Conference on Learning Representations (2018)

4. Challenge, G.: Grand challenge—a platform for end-to-end development of machine
learning solutions in biomedical imaging (2021)

5. Chung, H., Kim, J., McCann, M.T., Klasky, M.L., Ye, J.C.: Diffusion Posterior
Sampling for General Noisy Inverse Problems. In: The Eleventh International Con-
ference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net (2023), https://openreview.net/forum?id=OnD9zGAGT0k

6. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances
in neural information processing systems 34, 8780–8794 (2021)

7. Duffy, G., Cheng, P.P., Yuan, N., He, B., Kwan, A.C., Shun-Shin, M.J., Alexander,
K.M., Ebinger, J., Lungren, M.P., Rader, F., et al.: High-throughput precision phe-
notyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA
cardiology 7(4), 386–395 (2022)

8. Ho, J., Jain, A., Abbeel, P.: Denoising Diffusion Probabilistic Models. In:
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Ad-
vances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual (2020), https://proceedings.neurips.cc/paper/2020/hash/
4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

9. Huang, L., Zhou, Z., Guo, Y., Wang, Y.: A stability-enhanced cyclegan for ef-
fective domain transformation of unpaired ultrasound images. Biomedical Signal
Processing and Control 77, 103831 (2022)

10. Jiao, J., Zhou, J., Li, X., Xia, M., Huang, Y., Huang, L., Wang, N., Zhang, X., Zhou,
S., Wang, Y., et al.: Usfm: A universal ultrasound foundation model generalized
to tasks and organs towards label efficient image analysis. Medical image analysis
96, 103202 (2024)

11. Peng, H., Xue, C., Shao, Y., Chen, K., Xiong, J., Xie, Z., Zhang, L.: Semantic
segmentation of litchi branches using deeplabv3+ model. Ieee Access 8, 164546–
164555 (2020)

12. Sjoerdsma, M., Bouwmeester, S., Houthuizen, P., van de Vosse, F.N., Lopata, R.G.:
A spatial near-field clutter reduction filter preserving tissue speckle in echocardio-
graphy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
68(4), 979–992 (2020)

13. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-
based Generative Modeling through Stochastic Differential Equations. In: 9th In-
ternational Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net (2021), https://openreview.net/forum?
id=PxTIG12RRHS

14. Stevens, T.S.W., Meral, F.C., Yu, J., Apostolakis, I.Z., Robert, J., van Sloun,
R.J.G.: Dehazing Ultrasound Using Diffusion Models. IEEE Trans. Medical Imag-
ing 43(10), 3546–3558 (2024). https://doi.org/10.1109/TMI.2024.3363460

https://openreview.net/forum?id=OnD9zGAGT0k
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://doi.org/10.1109/TMI.2024.3363460
https://doi.org/10.1109/TMI.2024.3363460


10 Stevens et al.

15. Stevens, T.S.W., van Nierop, W.L., Luijten, B., van de Schaft, V., Nolan, O.I.,
Federici, B., van Harten, L.D., Penninga, S.W., Schueler, N.I., van Sloun, R.J.:
zea: A Toolbox for Cognitive Ultrasound Imaging (Jul 2025), https://github.com/
tue-bmd/zea

16. Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D.,
Yager, N., Gouillart, E., Yu, T.: scikit-image: image processing in python. PeerJ
2, e453 (2014)

17. Xia, M., Yang, H., Qu, Y., Guo, Y., Zhou, G., Zhang, F., Wang, Y.: Multilevel
structure-preserved gan for domain adaptation in intravascular ultrasound analysis.
Medical Image Analysis 82, 102614 (2022)

18. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns.
Communications of the ACM 27(3), 236–239 (1984)

https://github.com/tue-bmd/zea
https://github.com/tue-bmd/zea

	Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing

