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Abstract—Cognitive radars are systems that rely on learning
through interactions of the radar with the surrounding envi-
ronment. To realize this, radar transmit parameters can be
adapted such that they facilitate some downstream task. This
paper proposes the use of deep reinforcement learning (RL) to
learn policies for gain control under the object detection task. The
YOLOv3 single-shot object detector is used for the downstream
task and will be concurrently used alongside the RL agent.
Furthermore, a synthetic dataset is introduced which models the
radar environment with use of the Grand Theft Auto V game
engine. This approach allows for simulation of vast amounts of
data with flexible assignment of the radar parameters to aid in
the active learning process.

I. INTRODUCTION

Radar is one of the key sensory systems enabling au-
tonomous driving. A radar can retrieve radial range and
velocity information of objects within the field of view of the
antenna. It does so by measurement of the reflected signal
which differs in frequency and phase with respect to the
transmitted wave [1].

A radar system that uses information from the environment
to intelligently adjust the transmitted signal is known as
cognitive radar [2], [3]. The advantage of the cognitive radar
is the ability to close the loop between receiving and trans-
mitting elements, exploiting all relevant information through
active feedback. This paper focuses on continuous automated
gain control (AGC) at the cognitive radar transmitter. AGC
at the receiver aims to suppress the clutter response and
prevent receiver saturation [4]. AGC at the transmitter aims
at low probability of intercept radar operation [5]. Lower
output power reduces interference to the neighboring radars
in addition to saving energy. However, the probability of
detection decreases with decreasing output power and targets
can disappear under the noise floor. There is a clear trade-off
in adjusting the transmitter gain.

Traditionally, radar detection is performed through peak
detection using simple local thresholding methods such as
the Constant False-Alarm Rate (CFAR) algorithm [1]. These
methods, however, lack the sophistication of classifying ob-
jects and clustering the resulting sparse detections as they
disregard any Doppler signatures.

Deep learning methods for object detection in computer
vision can be used for target detection in range-Doppler
images [6], [7], [8]. Motivated by this deep learning promise,

we here extend the use to not only detection but also in-
clude optimization of radar parameters themselves using deep
reinforcement learning (RL) [9]. The proposed RL scheme
is incentivized by a reward signal that is derived from the
radar object detection score itself. This means that instead of
optimizing the gain parameter for some surrogate measure, we
directly optimize for the downstream object detection task.

We train our RL algorithm using synthetic data based on a
Frequency-modulated continuous-wave (FMCW) radar model
and the Grand Theft Auto V (GTA-V) game engine, which is
used to model the environment. There are two main advantages
to this approach. First, real radar data is expensive to acquire
and label. This is a valid concern, especially since deep
networks require lots of labeled data for training. Secondly,
it allows the RL agent to adjust the radar parameters on the
fly, and observe its impact on the environment, closing the
optimization loop. RL for radar has been introduced before, for
instance for adaptive spectrum allocation [10], [11], [12], [13].
Our work differs from current RL applications that use higher
level information to perform downstream tasks. We focus on
improving the unprocessed signal using RL at the lowest level,
given the raw sensory data as input to the network. Real radar
data is used to qualitatively assess the object detection task
and validity of the approach developed in this paper.

In Section II, we provide the radar signal model. Then, Sec-
tion III describes the object detection task. The RL framework
is presented in IV. Finally, the results are discussed in Section
V and conclusions derived in Section VI.

II. RADAR MODEL

A. Signal processing

FMCW radar is used to measure the range and speed of
targets while ensuring good localization and resolution. This
method uses a burst of very short chirps that ramp up in
frequency. The transmitted signal is given by

xTx(t) =

P−1∑
p=0

gp(t) exp
{
j2π(fct+

α

2
(t− pT )2

}
, (1)

where P is the number of pulses, fc is the carrier frequency,
sweep rate α = B/Ts and

gp(t) =

{
1, if pT < t < (p+ 1)T

0, otherwise
(2)



is the pulse function that determines the beginning and end
of each sweep. The pulse duration Ts < T is followed by
the idle time which results in pulse repetition interval T . The
received baseband signal with bandwidth B is obtained by
stretch processing sRx(t) = rRx(t)x

∗
Tx(t), and can be directly

modeled by

sRx(t) =

P−1∑
p=0

gp(t) exp {j(φ1(R0) + φ2(vR) + φ3(R0, p, t))} ,

(3)
where the dislocation of the pulse function is assumed negli-
gible, and the phase terms are

φ1(R0) = −2πfc
2R0

c
, (4)

φ2(vR) = −2πfc
2vR
c
t, (5)

φ3(R0, p, t) = −2πα(t− pT )
(
2R0

c

)
, (6)

which model the initial phase, Doppler shift, and delay respec-
tively. Terms that have negligible effect on the signal phase as
well as migration effects are omitted in this derivation. The
power of the reflected wave can be investigated using the radar
range equation, which can be written as

PRR
4

λ2σ
=
PTGTGR
(4π)3

. (7)

We refrain from making any assumptions on the antenna gains
by grouping the terms on the right-hand side under a common
power term Pc. This is the quantity used for AGC. Usually, the
transmitted power is designed to ensure a certain false alarm
rate and probability of detection. However, this trade-off can
limit the capabilities of the radar in certain scenarios.

The radar images in this work are constructed using a two-
dimensional Fast Fourier Transform (FFT) across both fast-
time and slow-time dimensions [14]. The resulting range-
Doppler image gives a representation of the raw radar signals
that preserve the embedded information while allowing the use
of computer vision deep learning tools.

B. Data acquisition

The radar model is built on point-clouds, where each point
represents a radar scatter. In order to obtain realistic point-
clouds of the environment, a game engine is used, namely
Grand Theft Auto V. The data is accessed through use of the
Script Hook V C++ open source library [15]. The use of such
a virtual environment allows for realistic dynamic settings that
are consistent from one radar frame to the next.

Through means of ray casting, a detailed point-cloud can be
extracted for each frame. Each point is a tuple containing the
radial velocity (vR), position (R0), orientation, ID, and type.
In this work only three kinds of objects are considered: pedes-
trians, vehicles and clutter. All clutter points are considered as
undesired radar returns originating from stationary objects.

C. Object modeling

The behavior of reflected signals from objects can be mod-
eled through the radar cross section (RCS) σ, which describes
how much of the energy is radiated back to the source. The
RCS of each object class is modeled in a different way. While
there are numerous studies on the land and urban clutter
statistics, e.g. [16], [17], the radar parameters and scenarios
used in this work are not covered in past research. Therefore,
clutter amplitudes are drawn from a Rayleigh distribution,
which gave the best fit with the clutter amplitudes in the
available real data that is used for verification of the deep
learning methods in this work.

Radar returns originating from pedestrians follow a Nak-
agami distribution, which is obtained by fitting a distribution
over the pedestrian RCS data in [18] along the angle of
observation. Due to the limited angular resolution of the ray
casting, often only a single point is assigned to a pedestrian.

Radar returns from vehicles are modeled to depend on
the vehicle orientation. The variation of RCS with respect
to angle is modeled after [18], using a superposition of four
Sinc functions is used: wider main lobes correspond to the
front and the back of the vehicle and narrower main lobes
correspond to the sides. The RCS for each point scatterer on
a vehicle is sampled based on the orientation and further scaled
by the amount of scatters dedicated to a specific vehicle and
randomized with Rayleigh distributed noise to account for the
effect of multiple scattering points in a single resolution cell.

D. Dataset

The dataset consists out of 220 GTA-V scenes with 100
frames each recorded at 20 fps. The dataset is split into
independent train and test sets. The training and test set hold
200 and 20 scenes respectively. Additionally, the training set
is equally split into a part for training the RL algorithm and
the object detector.

III. OBJECT DETECTION

Object detection is a deep learning method where multiple
objects in an image are simultaneously localized and classified.
In radar target detection, this method is favored over segmen-
tation tasks, as it can group pixels belonging to their respective
targets and provide semantic information at the same time.

You Only Look Once (YOLOv3) network is a state of the
art one-shot object detector [19]. It is suitable for radar target
detection as it has fast inference time combined with good
accuracy, potentially allowing for real-time implementation
of the detector. We here use Tiny-YOLO, a smaller version
of the YOLOv3 network that has shown similar results to
the original architecture in the context of radar detection [7].
For training we adopt a weighted cross-entropy (CE), which
helps overcome the class imbalance that is present in the
dataset. There are about twice as many vehicles compared
to pedestrians, and the inverse of this ratio is used to weigh
the CE loss. Lastly, the bounding boxes in the training dataset
are subjected to K-means clustering to find the proper anchor
priors for the YOLOv3 architecture.
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Fig. 1. From left to right, the screenshot from GTA-V at the moment the data is recorded, the point cloud in Cartesian coordinates w.r.t. the radar element,
and the resulting radar image produced by the FMCW model. The labeled bounding boxes for the object detection are shown as well.

Radar Model

YOLOv3

Fig. 2. Inference pipeline with the RL agent µθ and object detector (YOLOv3)
running in parallel. The dashed line suggests implicit dependence of the next
state st+1 with the previous state st through the GTA-V environment.

IV. REINFORCEMENT LEARNING

The reinforcement learning framework is governed by an
agent that takes actions according to some policy π : S →
P(A) by observing a state s ∈ S , which is a description
of the environment. The state s represents a range-Doppler
image and the action a corresponds to the radar power setting
Pc. The state transitions are modeled as a Markov Decision
Process (MDP). The objective of the agent is to maximize
the expected cumulative reward. In this work, we use the
unprocessed range-Doppler radar image directly as the input
state and control the output power of the radar according to the
agent’s policy. The current frame will thus dictate the newly
proposed radar parameter for the next frame, as is shown in
Fig. 2.

A. DDPG

Deep Deterministic Policy Gradient (DDPG) [20] is a
model-free off-policy actor-critic network with a continuous
action space that combines techniques from both ”Deep Q
Network” (DQN) [21] and ”Deterministic Policy Gradient”
(DPG) [22].

The algorithm concurrently learns two deep function ap-
proximators. An action-value function Qµφ(s, a), also know
as Q-function, is used as the critic network parameterized
by φ and describes the expected return given a state-action
pair (s, a), after which acting to the policy µ. On the other

hand, the actor network, parameterized by θ functions as the
deterministic policy µθ : S → A.

The DDPG algorithm utilizes the Bellman equation, as
many RL algorithms do, which relates the immediate reward
with the expected return that can be computed by the Q-
function. Learning of the critic network is performed by mini-
mizing the mean-squared Bellman error loss through gradient
descent:

L(φ) = E(st,at,r,st+1)∼D

[(
Qφ(st, at)− yt

)2]
, (8)

where r is the reward function and D is the Replay Memory,
which stores state transitions sampled from the environment.
The target value yt is equal to

yt = r(st, at) + γQφ(st+1, µθ(st+1)), (9)

where γ = 0.99 is the discount factor. The goal is to maximize
the objective function J , which is equal to the expected
cumulative reward. This can be done by choosing actions
according to the deterministic policy that maximizes the critic
value. The actor network is updated through gradient ascent
using the policy gradient, given by

∇θJ ' Est∼D [∇θQφ(st, µθ(st))] . (10)

The exploration-exploitation paradigm is treated by adding
noise on the action space. The noise is sampled from an
Ornstein-Uhlenbeck stochastic process, which introduces tem-
porally correlated exploration [20].

B. Actions and Rewards

The output of the actor network a is directly mapped to the
appropriate radar power output range Pc as an argument to
the radar model described in section II. Unlike loss functions
in supervised learning, reward functions r(st, at) do not need
to be differentiable. This allows use of non-smooth functions
such as the object detection score in the reward formulation.
During training of the RL agent, at every time-step, the F1
score of the object detector on the radar image is computed.
We seek to minimize the total power output of the radar
system, but not at the cost of degrading the object detection
performance. To balance this trade-off, the normalized action
a′t is subtracted from the F1 score as follows

r(st, at) = F1yolo(st) − a
′
t. (11)



An episode is defined as 100 consecutive frames, after which
the environment is reset and a new scenery is presented. Each
time-step produces a new state st which is updated with the
newly proposed power parameter but also is generated with
the next point-cloud in time. This means that already during
training the RL is subjected to a dynamic environment.

C. Network Architectures
Both actor and critic networks are convolutional neural

networks. The actor network has five convolutional layers with
a kernel size of 3×3, yielding feature maps of size 32, 64, 64,
128 and 256. Each convolutional layer is followed by a batch
normalization layer, ReLU activation and 2 × 2 maxpooling.
The final feature map is flattened and processed by a fully-
connected layer with 256 neurons, batch normalization and
ReLU activation. The final layer produces the action value
and has a tanh activation.

The critic network takes both state and action as input and
produces a single output value. The two-dimensional state is
fed through two similar convolutional blocks, using 16 and 32
filters. Both the output feature maps of the state and the action
are processed by two separate fully-connected layers with 32
neurons each. After batch normalization and ReLU activation,
these two layers are concatenated and subjected to two final
and similar dense layers both of size 256. The critic value is
obtained after a final layer free of non-linear activation.

V. RESULTS

A. Object Detection
In this section, the trained object detector is evaluated by

inference on both synthetic and real radar datasets. Visually,
the synthetic radar model shows similar dynamic behavior
and micro-Doppler features compared to the real data. We
further validate our radar model by qualitatively assessing
the object detection performance of models trained purely on
simulations, when tested on real datasets.

1) Synthetic data: The object detection scores are generated
with an intersection over union (IOU) and non-maximum
suppression (NMS) threshold of both 0.5. The resulting mean
average precision score is mAP = 54.8%.

The main difficulty for the object detection algorithm is
unsurprisingly the presence of clutter along the zero Doppler
axis. As a result, stationary targets, which reside on this axis,
are notoriously difficult to detect. For comparison, a mAP =
74.5% is obtained in the case all clutter points are removed
from the dataset. These results are comparable to those found
in [7].

2) Real data: We proceed by performing inference on real
radar data. The dataset consists out of 16 different videos,
with a total of 13538 radar frames. Since our dataset is
unlabeled, we qualitatively assess performance as a surrogate.
Fig. 3 shows two illustrative and typical examples. Carefull
visual assessment across the entire dataset showed that all
objects are tracked by the detector, meaning the objects are
consistently found by the network from frame to frame. In
general, visual inspection leads us to conclude that the object
detection network translates well to the real radar data.

Fig. 3. Object detection inference on real radar data. The Tiny-YOLO network
producing these results is trained on the synthetic dataset. The video footage
is shown on the left for verification of the detection. Alongside the bounding
boxes, the detection scores are given by Pr{Classi|Object} ∗ Pr{Object}.

B. Reinforcement Learning

The performance of the RL agent is obtained through
evaluation of the inference scheme in Fig. 2. The mAP score
is computed over all detections made during this process. The
adaptive case is compared to fixed power settings that corre-
spond to the average actions of the agent in each scene. A mAP
score increase of 1.6% is found when RL is used compared to
the non-adaptive settings.We then investigate the behavior of
the agent by analyzing action selection as a function of input
states. Fig. 5 shows the relationship between the number of
targets present in an image and the resulting action by the
agent. In general, when more targets are present the agent
favors to take actions that correspond to higher output power
of the radar. Additionally, the agent has recognized the cases
with zero targets, and significantly reduces the power in these
events. The power is never reduced to the minimum as this
risks losing targets in future frames. Lastly, even though the
allowed power range extends the maximum action taken by
the agent by far, the agent has learned it is not necessary to
increase the power further as there is no benefit of doing this
with reference to the object detection task. An example of
the agent in a dynamic scene is shown in Fig. 4. Visually
we can observe that the agent adaptively decreases power
when possible, and increases power to improve probability of
detection. It is important to point out that the agent is never
specifically told to adjust the power output in relation to the
number of targets (number of targets is a hidden variable of
the observed state), but rather has learned this through the
reward signal (11) which motivates the agent to find a balance
between performance and power consumption.



Fig. 4. Four consecutive range-Doppler frames shown with detected targets by the YOLO network accompanied with the power output Pc (values displayed
by the red color-bar in dBmW) chosen by the RL agent. Power output is increased when more targets are present, which improves probability of detection.
Power is decreased when less targets are present to reduce interference and power consumption.
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Fig. 5. Average actions taken by the RL agent Pc as a function of the number
of targets present in each image of the test dataset. On average, the agent tends
to increase the output power of the radar when more targets are present.

VI. CONCLUSION

In this paper, we propose a reinforcement learning method
for AGC in radar transmitter. Our method optimizes its adap-
tive gain policies for a given downstream task, such as radar
target detection, and is trained on a dataset that combines
point-cloud extraction from a game engine with a detailed
FMCW radar model.

The downstream object detection task is performed by
the YOLOv3 network that demonstrates good generalization
towards real data, which shows the radar model and GTA
environment are a viable solution for learning deep networks.

Results suggest that an RL agent is able to adaptively
reduce power consumption without loss in object detection
performance. In future work we will extend our framework to
RL-based control of other radar parameters.
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