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ABSTRACT
Video sequences often contain structured noise and back-
ground artifacts that obscure dynamic content, posing chal-
lenges for accurate analysis and restoration. Robust principal
component methods address this by decomposing data into
low-rank and sparse components. Still, the sparsity assump-
tion often fails to capture the rich variability present in real
video data. To overcome this limitation, a hybrid framework
that integrates low-rank temporal modeling with diffusion
posterior sampling is proposed. The proposed method, Nu-
clear Diffusion, is evaluated on a real-world medical imaging
problem, namely cardiac ultrasound dehazing, and demon-
strates improved dehazing performance compared to tradi-
tional RPCA concerning contrast enhancement (gCNR) and
signal preservation (KS statistic). These results highlight the
potential of combining model-based temporal models with
deep generative priors for high-fidelity video restoration.

Index Terms— RPCA, diffusion models, denoising

1. INTRODUCTION

Denoising, the recovery of a clean signal from a corrupted ob-
servation, is a foundational problem in signal processing [1],
encompassing a diverse range of applications from natural
image and video enhancement to sensory applications such
as medical imaging and radar [2]. Typically, the objective is
to disentangle informative structure from nuisance variabil-
ity, thereby improving interpretability and downstream anal-
ysis of observed data. In sequential data, such as videos, the
corruption is often structured rather than random, with back-
ground artifacts and stationary patterns that can obscure the
dynamic content of interest.

Robust PCA (RPCA) provides a principled approach for
separating foreground dynamics from structured background
by decomposing sequential data into a low-rank background
and a sparse component, representing the signal of interest.
This idea has been widely applied in various domains, includ-
ing speech [3], saliency detection, face recognition, and med-
ical imaging [4]. While sparsity can be imposed in alternative
transform domains (e.g., wavelet or frequency bases), such
choices remain handcrafted and often insufficient to capture
the rich variability of real signals.

Meanwhile, deep generative models (DGMs) are well-
suited to capturing complex statistical dependencies, such as
those present in videos. diffusion models (DMs) [5, 6] in
particular, have opened new directions in image restoration.
DMs learn to sample from complex data distributions through
iterative denoising, and have achieved state-of-the-art perfor-
mance across inverse problems such as denoising, deblurring,
and dehazing [7]. Acting as expressive learned priors, DMs
can capture rich statistical structure beyond simple pixel-wise
sparsity priors.

Building on this idea, we propose a hybrid denoising
framework that combines the temporal modeling of RPCA
with the expressive modeling of diffusion priors. In the pro-
posed method, the conventional sparsity assumption on the
foreground component is replaced with a learned diffusion
prior, while maintaining a nuclear norm penalty to encourage
low-rank temporal structure of the background. This is real-
ized through diffusion posterior sampling (DPS) [8], which
alternates between reverse diffusion and measurement-guided
updates, ultimately allowing more accurate recovery of the
dynamic foreground.

While our formulation is general-purpose, we evaluate
our method on the real-world problem of cardiac ultrasound
video dehazing, where structured noise (haze) degrades image
quality and hampers diagnostic clarity [9]. RPCA has been
a popular tool in ultrasound imaging, for example in clutter
suppression [10] and elastography denoising [11], and has
been extended through deep unfolding for high-dimensional
settings [12]. Despite these advances, the sparsity assumption
is often too restrictive in practice.

In this paper, we make the following contributions:

• A novel framework integrating DPS with a low-rank
temporal model, generalizing RPCA via data-driven
deep generative priors.

• An evaluation of the method on cardiac ultrasound de-
hazing, achieving enhanced image contrast while better
preserving anatomical structures compared to standard
RPCA.
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Fig. 1. Sequence of hazy cardiac ultrasound images Y , with
annotated regions of interest Ω used for evaluation.

2. BACKGROUND

2.1. Robust PCA for background supression

Robust PCA (RPCA) decomposes observations Y ∈ Rn×p

(e.g., pixel intensities of p frames, each of size n) into:

Y = L+X, (1)

where L is low-rank (coherent background, e.g., static haze)
and X is sparse (foreground dynamics, e.g. tissue signal).
Exact rank minimization is intractable, so RPCA solves
the convex surrogate known as principal component pur-
suit (PCP). A common approach is to relax the hard equality
constraint and form the Lagrangian:

min
L,X

∥L∥∗ + λ ∥X∥1 +
µ

2
∥Y −L−X∥2F , (2)

where ∥·∥F denotes the Frobenius norm, and ∥ · ∥∗ denotes
the nuclear norm, which serves as a convex surrogate for the
rank of L. In many imaging scenarios, the assumed signal
model of (1) is overly simplistic. The signal component X
often exhibits complex, structured patterns that are not truly
sparse. As a result, standard RPCA tends to over-penalize
these patterns, effectively attenuating or removing portions of
the true signal. This limitation motivates replacing the generic
ℓ1 sparsity prior with a learned diffusion prior that better mod-
els the complex distribution of images, while retaining low-
rank temporal modeling through a nuclear norm constraint.

2.2. Diffusion Posterior Sampling

Diffusion models learn the distribution p(x) of a random vari-
able x through a forward corruption process that gradually
adds Gaussian noise:

xτ = ατx0 + στ ϵ, ϵ ∼ N (0, I), (3)

where x0 ≡ x ∼ p(x), τ ∈ [0, T ], and ατ , στ are prede-
fined noise schedules. The generative process is then defined
as reversing this corruption, which is equivalent to iterative
denoising of xτ , starting from xT ∼ N (0, I). Tweedie’s for-
mula relates the minimum mean-square error estimate to the

Table 1. Comparison of RPCA and Nuclear Diffusion.

RPCA Nuclear Diffusion

p(Y | L,X) N (Y ;L+X, σ2I) N (Y ;L+X, σ2I)
p(L) ∝ exp(−∥L∥∗) ∝ exp(−∥L∥∗)
p(X) ∝ exp(−λ∥X∥1) pθ(X)

Inference argmax
L,X

p(L,X | Y ) X,L ∼ pθ(X,L | Y )

score of the distribution:

x0|τ := E[x0|xτ ] =
1

ατ

(
xτ + σ2

τ∇xτ log p(xτ )
)
, (4)

where x0|τ is a one-step denoised estimate, and the score
∇xτ

log p(xτ ) is parameterized by a neural network ϵθ,
often predicting the noise, which relates to the score via
ϵθ(xτ , τ) ≈ −στ∇xτ log p(xτ ). To sample from the prior
distribution p(x), at each step τ , x0 is estimated using (4)
and mapped back to xτ−1 via forward diffusion in (3), en-
suring a smooth sampling trajectory. The score network is
trained using the denoising score matching objective [13].
Unconditional score-based diffusion models can be adapted
for conditional sampling given noisy measurements, i.e., gen-
erating x ∼ p(x | y), by computing the score of the Bayesian
posterior. Exact posterior sampling with diffusion mod-
els is generally intractable, but several approximate meth-
ods exist [7]. Here, we adopt diffusion posterior sampling
(DPS) [8], which interleaves prior updates (denoising) with
guidance steps (gradient steps toward the measurements).
The prior update follows the same procedure as in uncondi-
tional sampling, while the guidance step, with forward model
y = f(x) + n and n ∼ N (0, σ2

nI) is given by:

∇xτ log p(y | xτ ) ≈ ∇xτ log p
(
y | x0|τ

)
(5)

= − 1

2σ2
n

∇xτ

∥∥y − f(x0|τ )
∥∥2
2
. (6)

We note that while p(y | x0) is often known exactly, the
noise-perturbed likelihood p(y | xτ ) generally does not admit
a closed form, motivating the approximation in (5).

3. METHODS

We adopt a Bayesian perspective to generalize the RPCA
framework and extend it with a learned diffusion prior. Given
observations Y ∈ Rn×p and independent latent variables L
and X we construct the following joint distribution:

p(Y ,L,X) = p(Y | L,X) p(L) p(X). (7)

To arrive at the RPCA objective in (2), one can use a Gaussian
forward model for the likelihood term:

p(Y | L,X) = N (Y ;L+X, µ−1I). (8)



Similarly, the low-rank component L follows a nuclear norm
prior:

p(L) ∝ exp(−γ∥L∥∗), (9)

which can be interpreted as a low-rank inducing prior, while
the signal component X is modeled with a Laplace prior to
enforce sparsity:

p(X) ∝ exp(−λ∥X∥1). (10)

Taking the negative logarithm of (7) and selecting the point
estimate that maximizes the posterior (i.e., the MAP solution)
recovers the classical RPCA objective in Lagrangian form, as
shown in (2).

Algorithm 1 Nuclear Diffusion Posterior Sampling
Require: observations Y , low-rank weighting γ, guidance

weighting µ, diffusion model ϵθ, diffusion steps T , noise
schedule ατ , στ

1: Initialize XT ∼ N (0, σ2
T I), L← 0

2: for τ = T to 0 do
3: ϵt ← ϵθ(x

t
τ , τ), ∀t = 1, . . . , p ▷ Predict noise

4: Eτ ← [ϵ1, . . . , ϵp] ▷ Stack frames
5: X0|τ ← 1

ατ
(Xτ − στEτ ) ▷ Denoise (prior)

6: Eτ ← µ
2 ∥Y −L−X0|τ∥2F ▷ Measurement error

7: X0|τ ←X0|τ −∇XEτ ▷ Likelihood guidance
8: Xτ−1 ← ατX0|τ + στ ϵ ▷ Forward diffusion
9: Rτ ← γ∥L∥∗ ▷ Low-rank penalty

10: L← L−∇L(Eτ +Rτ ) ▷ Background update
11: return X0,L

3.1. Nuclear diffusion

Building on this probabilistic formulation, we propose a hy-
brid framework that replaces the ℓ1 sparsity prior on X with
a learned diffusion prior pθ(X) and performs posterior sam-
pling instead of a MAP estimate, i.e., X,L ∼ pθ(X,L | Y ).
This allows X to capture complex, structured patterns beyond
simple sparsity, while retaining the low-rank nuclear norm
prior on L for temporal coherence. In practice, we implement
this by interleaving a reverse diffusion process, as described
in Section 2.2, with gradient-based guidance from the likeli-
hood in (8) and the low-rank prior.

The diffusion prior pθ(X) is applied in the spatial do-
main to individual frames, while temporal dependencies are
enforced solely through the low-rank prior on L. This sepa-
ration enables the use of pretrained 2D diffusion models, sim-
plifying implementation and avoiding the need for specialized
video diffusion networks. Concretely, the signal component
X can be written as:

X =
[
x1 x2 . . . xp

]
∈ Rn×p, (11)

where each column xt ∈ Rn represents the vectorized image
at time t. The learned prior is parameterized by a denoising
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Fig. 2. KS statistic for various amount of motion levels mea-
sured via PSNR(yt,yt−1), with Nuclear Diffusion outper-
forming RPCA across the entire range.

diffusion model ϵθ(xt
τ , τ), which independently operates on

a single noisy frame xt
τ at diffusion step τ :

xt
τ 7→ ϵθ(x

t
τ , τ), ∀ t ∈ {1, . . . , p}. (12)

Applying the per-frame denoiser independently across all
frames induces a joint prior over the entire sequence, formal-
ized in terms of scores for diffusion sampling [6]:

∇X log pθ(X) = − 1

στ

[
ϵθ(x

1
τ , τ), . . . , ϵθ(x

p
τ , τ)

]
. (13)

The inference framework is detailed in Algorithm 1 and a
comparison of the distributions is given in Table 1.

4. RESULTS

We evaluate the proposed method on the task of cardiac ul-
trasound dehazing, focusing on both haze removal and tissue
structure preservation. Given that a ground truth is not avail-
able, performance is assessed using two unsupervised met-
rics: generalized contrast-to-noise ratio (gCNR) [14], which
we use to measure contrast between ventricle ΩV and septum
ΩS regions. Additionally, we use the Kolmogorov–Smirnov
(KS) statistic to quantify agreement between the original Y
and denoised X tissue distributions in the septum region ΩS .

KS = sup
z

∣∣∣FΩS(x)(z)− FΩS(y)(z)
∣∣∣, (14)

where F (·) is the empirical CDF of the respective ROIs.
See Fig. 1 for an example sequence with annotated regions.
The dataset contains videos of 60 × 256 × 256, with in total
4,376 clean frames from 75 easy-to-image subjects and 2,324
noisy frames from 40 difficult-to-image subjects [15]. Fig. 3
presents a qualitative comparison. Both Nuclear Diffusion
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Fig. 3. Comparison on the task of cardiac ultrasound dehazing. While both methods suppress haze (shown in bottom insets),
RPCA tends to excessively attenuate tissue, resulting in sparse structures, whereas Nuclear Diffusion better preserves details.

and RPCA reduce haze, but RPCA over-attenuates tissue,
resulting in sparse or discontinuous structures, while Nuclear
Diffusion adheres better to the prior trained on the clean
dataset. Quantitative results support these observations, as
shown in Fig. 4 and Fig. 2. Results are generated with 500
diffusion steps, accelerated using SeqDiff [16] (T = 5000),
with Y t as initialization. Furthermore, we use γ = 1, µ = 2,
and p = 7. The method is implemented using the zea [17]
library with JAX backend.

5. CONCLUSIONS

In this paper, we introduced a hybrid framework that general-
izes RPCA by integrating low-rank temporal modeling with
learned generative diffusion priors. By replacing the stan-
dard ℓ1 sparsity prior with a score-based generative model
and performing diffusion posterior sampling with a nuclear
norm penalty, our approach captures complex signal compo-
nents while explicitly separating dynamic foreground from
low-rank background. We demonstrated the effectiveness of
this method on cardiac ultrasound video dehazing, showing
that it can suppress haze artifacts and improve image contrast
while preserving delicate tissue . These results highlight the
potential of combining classical low-rank priors with modern
generative models for video restoration.
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Fig. 4. Quantitative comparison of Nuclear Diffusion and
RPCA using gCNR and KS metrics. Nuclear Diffusion
achieves higher contrast between ΩS and ΩV while preserv-
ing the tissue intensity distribution in ΩS , whereas RPCA
tends to attenuate tissue and distort signal statistics.
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