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ABSTRACT
Intravascular UltraSound (IVUS) is a key tool in guiding the
treatment and diagnosis of various coronary heart diseases.
However, due to its nature IVUS is a very challenging modal-
ity to interpret, and suffers from a severely restricted data
transfer rate. This forces a trade-off between temporal and
spatial resolution. Here, we propose a model-based deep
learning solution that aims to reconstruct images from data
that has been beamformed by under-sampling the number of
channels by a factor of 4. By exploiting the physics based
measurement model, we achieve better performance and con-
sistency in our predictions when compared to a benchmark
model. This lowers the computational load on existing hard-
ware and enables in exploring our ability to run multiple
visualisation modalities simultaneously, without a loss of
temporal resolution.

Index Terms— IVUS, AI, Model Based Neural Network,
Denoising

1. INTRODUCTION

Intravascular ultrasound (IVUS) has proven to be a valuable
tool for accurate diagnosis of diseases and complications that
cannot otherwise be imaged by conventional ultrasound. Con-
ditions such as abdominal aortic aneurysm [1], or atheroscle-
rosis [2] employ IVUS as a fundamental tool. Due to IVUS’s
nature as a cost-effective alternative to many other imaging
modalities, it is widely employed, albeit extremely difficult to
interpret.

As a catheter-based ultrasound device, IVUS suffers from
a highly constricted bandwidth. Therefore, it is forced into
a trade-off between temporal and spatial resolution. In order
to relax this trade-off, we propose a solution that sub-samples
the acquired data by a factor of 4. We then attempt to re-
construct the fully-sampled image through a deep Unfolded
Proximal Gradient Network (UPGN), a model-based neural
architecture.

Neural networks such as UNets [3], and ResNets [4] are
popular choices for tackling similar problems. Such networks
and variations of them offer an off-the-shelf solution that
works extremely well in a large variety of problems related

to medical imaging [5, 6, 7]. Often, these networks are also
successfully employed within an Adversarial setting [8].

Unfortunately, these advantages come at a price. These
networks often yield solutions that violate the physical mea-
surement model. They are also typically over-parameterised
[9], which can lead to problems regarding under-specification
[10], which may lead to networks learning ”shortcuts” to op-
timise the problem at hand. We aim to overcome these prob-
lems by embedding a model-based approach into the architec-
ture of a neural network, thereby limiting the degrees of free-
dom in the neural architecture. We achieve this by unrolling
a proximal gradient solution, and learning all free parameters
from data.

By doing so, we can relax the requirement on pre-existing
hardware, allowing for multiple visualisation modalities to be
run simultaneously, without losing temporal resolution. This
study builds on the work presented in [11] as an inspiration for
the training strategy, and utilises it to solve a different prob-
lem, specifically that of IVUS imaging.

We begin with deriving the model-based neural architec-
ture in Section 2, followed by an explanation of the data that
was used to train the proposed network in Section 3. Next, the
training strategy is explained in Section 4. We present the re-
sults and discuss them in Section 5. Finally, our conclusions
are summarised in Section 6.

2. METHODS

We model the recovery of an IVUS image as an inverse prob-
lem in which we aim to reconstruct the underlying fully sam-
pled image from an under-sampled measurement. We ex-
press x ∈ RN as the fully sampled beamformed image, and
y ∈ RN as the beamformed image after under-sampling the
number of receive elements. This can be modelled as

y = DsubS(x
′), (1)

where Dsub is a sub-sampling beamforming matrix, and S is
a non-linear scattering function, acting on the tissue intensity
map x′. We then make a linear assumption on the right hand
side of (1), giving us,
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Fig. 1. The image describes the process of unfolding an iterative solution to K folds, giving us a model with fixed computational
complexity, and where all free parameters may be learnt from data. We input log-compressed polar data, and then convert the
prediction into the cartesian domain for display.

Fig. 2. The images show an under-sampled input, the given ground truth, the proposed Unfolded Proximal Gradient Network
(UPGN), and the best of the benchmark networks, the UNet Lite. It also shows an area with the images, that has been focused
on.

y ≈ Ax, (2)

where A ∈ RN×N is the measurement matrix, which may
be looked as a degradation matrix in this context. We also
assume that the measurement matrix follows a convolutional
toeplitz structure, which enables us to re-write A as a convo-
lutional kernel.

In this context, the measurement matrix can be we writ-
ten out exactly. However, rather than deriving an analytical
solution, we would prefer to learn this from data. Assuming a
Gaussian model, we solve this problem by re-writing (2) as,

x̂ = argmin
x

‖y −Ax‖22 +R(x), (3)

where R(x) acts as a regulariser.
Assuming that R(x) is known, we may derive a proximal

gradient solution for (3). This results in an iterative algorithm
that alternates between a data consistency step, and a proxi-
mal step that nudges the intermediate solutions to the prox-
imity of the regulariser. Such an algorithm can be described

as:
x̂(k+1) = P(x̂(k) − µAT (Ax̂(k) − y)), (4)

where µ is a step size, and P(k) is the proximal operator of
the regulariser [12]. We can now rewrite (4) to separate the
contributions of x̂ and y, giving us,

x̂(k+1) = P(k)
θ (W(k)y +V(k)x̂(k)), (5)

where θ denotes the learnable parameters of the proximal op-
erator, W(k) = µ(k)AT and V(k) = I − µ(k)ATA. Addi-
tionally, by utilising the convolutional nature of A, we may
re-write W(k) and V(k)x̂(k) as:

W(k)y = w(k) ~ y, (6)

V(k)x̂(k) = v(k) ~ x̂(k), (7)

where ~ represents a convolutional operation, where the con-
volutional kernels have a size of 3×3. Here, P(k)

θ is modelled
using a U-Net style NN comprised of 9 convolutional layers



Table 1. A quantitative comparison between the proposed Unfolded Proximal Gradient Network (5 folds), a UNet Lite (a
network with a similar number of parameters), a full sized UNet, and a ResNet. We compare the Peak Signal to Noise Ratio
(PSNR), the Mean Absolute Error (MAE), and the number of parameters.

Network PSNR MAE No. of
(mean ± var) (mean ± var) Parameters

Unfolded Proximal 23.37 ± 2.6 4.3 ×10−2 ± 4.27 ×10−5 ∼ 175 kGradient Network
UNet Lite 23.1 ± 4.21 4.3 ×10−2 ± 8.2 ×10−5 ∼ 160 k

UNet 20.21 ± 1.85 5.14 ×10−2 ± 6.92 ×10−5 ∼ 1175 k
ResNet 21.42 ± 1.21 7.03 ×10−2 ± 6.94 ×10−5 ∼ 226 k

with Leaky ReLU activations, which is then learnt from the
training data.

Rather than crafting an analytical form for the regulariser,
we aim to learn this directly from our training data. Thus,
we may unfold the iterative algorithm (4), into a K-layered
Neural Network denoted by Uθ [13, 14, 15], as shown in Fig
1. This allows us to learn all available free parameters from
data. Consequently, we are also able to avoid the computa-
tional ambiguity of iterative algorithms, and fix the computa-
tional complexity of the solution.

3. DATA ACQUISITION

The dataset used in this study consists of six different record-
ings performed during IVUS-catheter pullbacks in a porcine
model, that were acquired apriori. We then randomly sample
150 images from each of these pullbacks to obtain 900 frames
in total, of which 150 frames are assigned to the validation set.
The pullbacks are done at approximately 1 mm/s for a length
30 mm. The data is recorded in raw channel RF format. After
beamforming, each frame contains 456 scanlines, with 520
samples along the penetration depth of 8 mm.

The training data is under-sampled by a factor of 4, by
only considering every fourth receiving transducer element
(from a 114 element transducer array). After beamforming
and log-compression, we convert all frames to the polar do-
main and train the networks. We may then transform the pre-
dicted result back to the cartesian domain for display.

4. TRAINING STRATEGY

We employ an adversarial training strategy to train our net-
work. In this case, the role of the adversary is fulfilled by
a four layered convolutional neural network configured as a
PatchGAN [16].

We use a combination of pixel based loss term (`1), de-
noted as L`1 , and a distribution-based loss term (adversarial
loss; Binary Cross Entropy), denoted as Ladv . In addition to
these terms, we also use an `2 term between subsequent im-
ages ((t − 1)th and tth frame), so as to reduce uncorrelated

noise in the predictions, and to promote consistency. This is
given as,

Lftf = ‖(Uθ(yt−1))− (Uθ(yt))‖22 . (8)

We then combine the individual loss terms into one loss func-
tion, defined as:

Ltot = λ1 · Ladv + λ2 · L`1 + λ3 · Lftf , (9)

where λi are weight terms, with λ1 = 1.0, λ2 = 1.0, and
λ3 = 0.001. All λi terms were determined empirically.

Furthermore, we train the network in a greedy manner
[17]. In effect, we train the network one fold at a time, in
conjunction with the Kth fold. We then continue to add in-
termediary folds, while freezing the previously trained fold.
This process is continued until the full network is trained.
Each step in the process is trained for 1500 epochs, which
leads to a total of 6000 epochs, for a 5 fold network.

We use the Adam optimiser [18] with a learning rate of
10−5, and β1 = 0.5. All other optimiser parameters are left
at default, as described in [18]. All of the networks were im-
plemented using Python 3 and TensorFlow 2 [19], and trained
using an NVIDIA GPU.

5. RESULTS

Fig. 2 displays a series of images including the input, the
given ground truth, a prediction from the proposed network,
and the prediction from a benchmark network, a UNet like
(UNet Lite) neural network. Of the chosen benchmarks, the
UNet Lite performed the best, which is why we have opted to
highlight it. UNets are commonly used for comparable tasks,
and due to its architecture that contains skip connections, it
serves as a good common denominator among the most pop-
ular choices for our task. Furthermore, Fig. 2 shows high-
lighted areas within the image so that we may examine the
quality of the prediction at a more detailed level.

In Fig. 2, we notice that both networks manage to re-
construct the ground truth to a large extent. However, we
can visually verify the fact that the interface between tissues
is much better defined with the proposed network, than the
benchmark networks, in addition to reproducing a speckle



pattern that is qualitatively, much more representative of the
ground truth.

Table 1 shows the comparison between the proposed
method, and the benchmark networks. Although the Peak
Signal to Noise Ratio (PSNR) values are quite close to each
other, we do notice a bigger difference in the variance of
the PSNR values between the two best performing networks.
This makes a case for the consistency of the predictions
produced by the proposed network. A similar trend can be
observed with the Mean Absolute Error (MAE).

Neural networks are designed to optimise for the lowest
value of the designated loss function rather than the best im-
age, perceptually. Although the training process for all bench-
marks were the same (albeit without the greedy training pro-
cess), we see that it has not managed to optimise for the best
perceptual image quality. This also alludes to why the test
metrics may be so close to each other, even though the results
can be discriminated from each other upon visual inspection.

6. CONCLUSION

IVUS is a valuable imaging modality supporting in the diag-
nosis and treatment of multiple coronary diseases. However,
due to its limited bandwidth, it requires finding an optimal
balance between spatial and temporal resolution. To address
this issue, we have presented a model-based neural archi-
tecture that aims to reconstruct fully-sampled images, from
under-sampled data. Based on the results presented in Fig. 2
and Table 1, we can conclude that the proposed network out-
performs the benchmarks in reconstructing the given ground
truth. The result is obtained with a reduction in the required
data by a factor of 4.

While this is an encouraging result, it represents only the
the first step along our research line. Exploring the augmenta-
tion of the training data with in-silico samples, and a learned
model-based regulariser will be crucial next steps in improv-
ing the results from this baseline.
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