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ABSTRACT
Intravascular ultrasound (IVUS) offers a unique perspective
in the treatment of vascular diseases by creating a sequence of
ultrasound-slices acquired from within the vessel. However,
unlike conventional hand-held ultrasound, the thin catheter
only provides room for a small number of physical chan-
nels for signal transfer from a transducer-array at the tip. For
continued improvement of image quality and frame rate, we
present the use of deep reinforcement learning to deal with
the current physical information bottleneck. Valuable inspira-
tion has come from the field of magnetic resonance imaging
(MRI), where learned acquisition schemes have brought sig-
nificant acceleration in image acquisition at competing image
quality. To efficiently accelerate IVUS imaging, we propose
a framework that utilizes deep reinforcement learning for an
optimal adaptive acquisition policy on a per-frame basis en-
abled by actor-critic methods and Gumbel top-K sampling.

Index Terms— Deep reinforcement learning, intravascu-
lar ultrasound, compressed sensing

1. INTRODUCTION

Minimally invasive vascular interventions are increasingly
guided by phased array intravascular imaging. Intravascular
ultrasound (IVUS) is a catheter-based imaging modality that
enables detailed assessment of the lumen, endothelium and
surrounding tissue of blood vessels. Most importantly, it
enables the verification of the treatment, generally the place-
ment of one or more stents.

Ultrasound (US) is an affordable, safe and overall conve-
nient medical imaging tool. However, in general, ultrasound
images are notoriously difficult to interpret, due to the char-
acteristics of current methods of ultrasound image formation.
For IVUS images, this means that the artifacts such as clut-
ter and speckle strongly affect the appearance of small details
and of subtle variations in texture. A good image quality fa-
cilitates the important distinction between tissues but also e.g.
between different types of arterial plaque. It also makes it eas-
ier to verify the proper placement of a stent.

Image quality in phased array IVUS is fundamentally
bounded by the information extracted by the adopted pulse-
echo imaging sequence. Subsampling of this acquisition

sequence to boost frame rates while maintaining image qual-
ity is an active area of research in ultrasound in general
[1, 2], but its benefits are especially promising for IVUS as
its form-factor highly limits the bandwidth for the raw sensor
data. Careful selection of which measurements to sample
will not only reduce the amount of data, but subsequently
decrease acquisition time and potentially simplify the hard-
ware. Moreover, it allows extra time for dedicated imaging
modes, such as spectral Doppler imaging and high-resolution
elastography, potentially providing additional clinical infor-
mation. Furthermore, the reconstruction of the blood vessel
is captured in a sequence of frames by the gradual withdrawal
of the transducer-bearing catheter. These pullbacks are often
accompanied by motion artifacts [3]. High-frame rate imag-
ing is therefore desirable as it alleviates these adverse motion
effects and allows for faster pullbacks thereby reducing the
overall procedure time. In a clinical setting, this directly
translates to quicker interventions.

Model-based approaches towards subsampling of ultra-
sound data focus on either sub-aperture imaging [4] or sparse
array designs such as Cantor arrays [5]. These sequences are
hand-engineered, static, and not jointly optimized with down-
stream image reconstruction methods. In the past decades,
digitization of raw radio-frequency (RF) channel data and the
subsequent beamforming required custom signal processing
hardware, to achieve real-time performance. Today, the avail-
ability of affordable, fast general-purpose high-performance
processors opens the way to implement increasingly sophis-
ticated algorithms for real-time ultrasound image formation.
This revolution in high-performance computing has spurred
the adoption of deep learning (DL) in ultrasound imaging
[6, 7, 8]. Naturally, this trend has also led to the use of com-
pressed sensing (CS) in ultrasound imaging [1, 2].

Therefore, we propose learning optimal IVUS-specific
acquisition-sequencing using state-of-the-art DL methods in
a framework we dub as AiVUS. The framework learns to opti-
mally extract information from the acoustic scene by adaptive
sampling of transducer element pairs. AiVUS poses imaging
as an information-gain problem, where the intelligent system
measures precisely what is needed to provide at any time
the optimal trade-off between imaging properties, disturbing
artifacts, and constraints on data rates.



To that end, AiVUS relies on deep reinforcement learning
(DRL). Researchers have employed DRL with great success
in a variety of applications, from magnetic resonance imag-
ing (MRI) [9] and computed tomography (CT) [10] to radar
[11]. Adaptive sampling methods for medical imaging that
use DRL have predominantly been developed for MRI [9, 12].
These frameworks seek to iteratively optimize the measure-
ments taken for a single reconstruction. This means that the
RL loop is executed for every measurement necessary to con-
struct the frame. However, we argue this approach does not
extrapolate well to IVUS, as the scan time in MRI is orders of
magnitude longer compared to ultrasound acquisition [13]. In
contrast to these methods, AiVUS selects all measurements
needed for a single IVUS reconstruction concurrently, such
that the agent is employed on a per-frame basis. This means
that the sampling strategy of the current frame is conditioned
on the reconstruction of the previous frame, which benefits
the faster IVUS acquisition process. Granted, sufficient tem-
poral correlation between successive frames is assumed. In
other words, the current imaging scene is informative enough
for the policy to provide valid sampling for the next frame.

Other deep learning subsample strategies (not using
DRL), such as Deep Probabilistic Subsampling (DPS) [2] and
Active-DPS (A-DPS) [14] leverage the so-called ‘Gumbel-
max trick’ [15], a reparameterization ’trick’ to jointly opti-
mize a sampling- and reconstruction-network. DPS learns
a fixed sample scheme using a generative sampling model,
while A-DPS extends this to an active acquisition framework
that conditions the sampling procedure on already acquired
data. Both DPS and A-DPS require fully differentiable signal
processing pipelines for joint optimization with the sample
network. This inherently limits the scope of applications.

2. METHODS

2.1. IVUS Signal Acquisition
Circular-array intravascular ultrasound imaging utilizes uni-
formly spaced transducers to generate a tomographic recon-
struction of the blood vessel wall. Multiple elements elim-
inate the need for rotating mechanical systems by virtue of
an array processing technique known as beamforming, which
aims to maximize spatial resolution. During beamforming,
focused virtual beams are constructed from unfocused ul-
trasound pulse-echo signals. The fundamental principle of
delay-and-sum beamforming is to arrange the raw data such
that the coherent signals are enhanced while the incoherent
signals are suppressed through temporal adjustment (time-of-
flight correction) and spatial adjustment (apodization). Due to
the limited space in the operational domain, severe hardware
constraints are imposed on the catheter-based IVUS probe,
leaving room for only small circuitry and for only a small
number of signal wires. Therefore, each acquisition, corre-
sponding to a transmitting-receiving transducer-element pair,
is time-multiplexed and sent over the catheter one at a time.
This provokes a trade-off between the image resolution and

data acquisition time, which scales linearly with the amount
of measured data.

Because of the circular nature of the array, it is advan-
tageous to only combine pulse-echo responses of neighbor-
ing transducers. Only elements that significantly contribute
to the resulting focused beam are used. For reconstruction of
a single IVUS image, the number of measurements is equal to
N = E × A, where E is the number of ultrasound elements
andA is the sub-aperture size. Each of theseN measurements
is a vector containing the fast-time RF samples.

2.2. Subsampling
Given the RF channel data x ∈ RN , we are looking for an
optimal binary subsampling mask a ∈ {0, 1}N that selects
K ≤ N measurements from the total of N possible measure-
ments (i.e. element pairs), resulting in an N/K acceleration
of the acquisition process. The measured data is given by

y = a� x, (1)

where � denotes an element-wise multiplication. Given the
current partial acquisition y ∈ RN , which is zero-filled at
the non-sampled indices, we would like to design an adap-
tive subsampling mask a that maximizes image quality of the
next frame. The reconstruction operation g(·) encompasses
all signal processing operations for B-mode imaging, after
which the IVUS image s = g(y) follows. A fixed apodization
scheme was used for the sake of simplicity. This may require
further investigation in future work.

2.3. Reinforcement Learning for Adaptive Subsampling
The model in AiVUS that performs the adaptive subsam-
pling is trained using reinforcement learning (RL). An RL
agent takes actions upon observation of its interaction with
the environment and can learn to update its behavior accord-
ingly. Transitions in this perception-action-learning loop are
modeled as a Partially Observable Markov Decision Process
(POMDP). Each step t in the POMDP corresponds to the
acquisition and reconstruction of a single IVUS image s.
An action at represents a partial acquisition of IVUS data,
according to some transmit scheme. The agent produces a
policy π(at|st) over actions given the current reconstruc-
tion st and is incentivised by a reward signal rt(st,at)
that captures the reconstruction quality of s with respect
to the ground truth image g(x). The goal of the agent
is to maximize the expected discounted cumulative reward
Jπ =

∑T−1
t=0 E(st,at)∼π [γ

tr(st,at)], where the episodes of
length T are indexed by t ∈ [0, T − 1]. The discount factor γ
weighs the reward scores such that more emphasis is placed
on immediate rewards. In order to meet the high dimensional
state and action spaces, an actor-critic framework is lever-
aged for training the RL policy [16, 17]. Actor-critic methods
extend the use of an action-value function Q, modeled by the
critic network, with an explicit definition of the policy, i.e.
the actor network π parameterized by θ. The critic network
Q parameterized by φ can be iteratively updated through
stochastic gradient descent using the Bellman error [16, 17]:



JQ(φ) = E(st,at,st+1)∼D

[(
Qφ(st,at)− Q̂(st,at)

)2]
, (2)

where D is the Replay Memory, which stores state transitions
sampled from the environment. The target value Q̂ given by

Q̂(st,at) = r(st,at) + γQφ′(st+1, πθ′(st+1)), (3)

defines the recursive relation of the action-value function
through temporal difference (TD) learning. The target is
computed with separate target networks parameterized by
φ′, θ′ to improve stability of learning [16]. The actor network
is updated through gradient ascent using the policy gradient

∇θJπ(θ) ' Est∼D,et∼Gumbel [∇θQφ(st, πθ(st))] , (4)

such that the expected return, modeled by Qφ(·), is max-
imized. Current actor-critic methods such as Deep Deter-
ministic Policy Gradient (DDPG) [16] and Soft Actor-Critic
(SAC) [17] do not directly support multiple action selection.
In the IVUS setting, we cannot afford running the network it-
eratively to generate multiple actions for a single reconstruc-
tion, due to the high pulse-repetition interval. Multiple ac-
tions can be modeled by a larger underlying unstructured dis-
tribution such that the policy only has to sample a single ac-
tion. However, because the number of parameters of a distri-
bution over an N -choose-K problem scales factorially, mod-
eling the underlying categorical distribution using the policy
is intractable. Therefore, AiVUS leverages Gumbel top-K
sampling, which allows exact sampling of K actions simulta-
neously by a single pass of the policy network [18]. Gumbel
top-K sampling is equivalent to samplingK times without re-
placement from the same categorical distribution. In this way,
the logits of the policy network represent only a single cate-
gorical distribution of size N from which we take K actions.
Gumbel Top-K sampling is a generalization of the Gumbel-
max trick [15] which perturbs the unnormalized logits with
i.i.d. Gumbel noise samples

et = − log (− log(U)) ∗ σ ∼ Gumbel(0, σ), (5)

where U ∈ [0, 1] is sampled from a continuous uniform dis-
tribution. The Gumbel samples are sampled with scaling term
σ. The sampling procedure is computed as follows:

at = topK(fθ(st) + et), (6)

where fθ is a deterministic function of the state whose log-
its represent the unnormalized log-probabilities over actions,
from which πθ follows after top-K sampling. The non-
differentiable argmax(·) operation (used to compute top-K)
can be relaxed with reparameterizable subset sampling us-
ing softmax(·) [19], to permit error backpropagation through
fθ(·), similar as done in [2]. Intuitively, we can scale the
Gumbel noise with σ to sample more uniform actions, which
in return ensures exploration. During training we use an an-
nealing scheme for σ, starting with a relatively high value
(σ = 2), and reducing it until reaching a set minimum value
(σ = 0.2). In practice, this annealing approach led to more
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Fig. 1: Block diagram of the perception-action-learning loop
of the RL agent in an IVUS imaging setting.

stable training compared to a fixed setting of σ = 1. Dur-
ing evaluation, we disable the Gumbel noise and take the
top-K largest values of the policy distribution. A schematic
overview of the full signal path is shown in Fig. 1.

3. EXPERIMENTS

In this work, a prototype capacitive micromachined ultrasonic
transducer (CMUT) IVUS sensor with a 114 element circu-
lar phased-array (Philips Research [20]) is used to provide
the raw RF data for training and verification of the models.
We demonstrate our framework on three different datasets, in-
creasing in complexity. Namely, simulated wire targets, wire
phantoms and in-vivo data from a porcine model. The data
is recorded in raw channel RF format and after beamforming
each frame contains 456 scanlines with 520 samples along
the penetration depth of 8mm. We consider episodic envi-
ronments with fixed length T = 10.

3.1. Simulated Wire Target
The first dataset is created by simulating moving wire targets
that revolve around the center at a random distance. We test
if AiVUS can learn an adaptive policy and track the targets.
In this specific case, it is very clear what kind of policy is
expected, i.e. sample the channels that originate from trans-
ducers that are in close vicinity to the wire targets. The policy
network is trained on 200 frames and evaluated on 100 test
examples. A mean squared error (MSE) is used as reward:

rt = ηMSE = −||st − g(xt))||22. (7)

3.2. Wire Phantom
To bridge the gap from simulated data to more realistic US
data, we subject the DRL agent to images of wire phantoms.
It allows to assess the performance of the agent in a more
realistic environment which encompasses interference and
noise as well as more subtle US features such as reverbera-
tion and ringdown. In total 15 sequences with 8767 frames
are recorded, of which 20% are randomly assigned to the test
set. For the reward calculation, (7) is used, however, the im-
ages are filtered using straightforward thresholding to reduce
background noise and interference. We found this step was
useful for constructing a consistent reward signal.



Fig. 2: Six successive wire phantom frames constructed using AiVUS. The
agent’s action is displayed in the top row, where the circle represents the
elements in the transducer array. Actions are displayed such that black rep-
resents 1 receiving element and white A receiving elements, for each trans-
mitting element ∈ {1, . . . , E}.
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Fig. 3: SSIM performance on the in-vivo test
data for both learned (AiVUS) and random sam-
pling strategies. Average and standard devia-
tions are computed over five seeds.

3.3. In-vivo data
Although the wire target experiment shows proof of concept
of AiVUS, experiments on in-vivo data are necessary to show
the framework has potential for clinical relevance. The prior
acquired dataset consists of eight different pullbacks from a
porcine model with 8679 frames in total of which 20% is ran-
domly assigned as test set. Each pullback is done at approxi-
mately 1mm/s for a length of 30mm. The structural similar-
ity index measure (SSIM) is used as opposed to the MSE for
training the policy network. Furthermore, we observe that the
speckle, which is the granular appearance inherent to the ul-
trasound imaging, has a significant effect on the image quality
metric. Different sample schemes lead to small shifts in the
speckle texture which translate to the reward score. Slight
changes in the speckle texture do not positively contribute to
the visual appearance as the speckle pattern appears random.
To promote sharp reconstruction of local features, we add an
adversarial loss by adopting a discriminator networkDψ . The
resulting reward score is a combination of the SSIM score and
discriminator loss LDψ :

rt = ηSSIM − λDLDψ , (8)

where λD weights the discriminator loss to the image quality
metric and was empirically set to 1e−5. To further reduce
the effect of the speckle, an anisotropic diffusion filter is ap-
plied to both state and ground truth images before the reward
calculation.

4. RESULTS

In Table 1 we report test scores of the final reconstructions
using four common image quality metrics. Namely, the
mean-squared error (MSE), mean-absolute error (MAE), peak
signal-to-noise ratio (PSNR) and the structural similarity in-
dex measure (SSIM). The trained DRL agent is compared
to an agent which randomly samples from the transducer
element pairs with the same subsampling factor. AiVUS out-
performs a random agent on all four metrics. Fig. 2 shows a
sequence of successive frames from the wire phantom dataset

Table 1: Quantitative results on the test sets of all three ex-
periments with subsampling factor N/K = 4, comparing a
random agent (I) with a trained agent (II) (AiVUS).

Dataset Sim. Phantom In-vivo

Agent I II I II I II

MSE ↓ 3.25 1.42 0.067 0.047 0.078 0.070
MAE ↓ 0.069 0.034 0.169 0.133 0.211 0.200
PSNR ↑ 44.33 49.95 61.59 64.48 59.43 59.90
SSIM ↑ 0.996 0.998 0.308 0.447 0.552 0.578

alongside the sampling actions that were used to facilitate the
reconstruction. AiVUS is able to show adaptivity by increas-
ing the aperture size of specific transducers that are located
near the target and tracking the targets from frame to frame.
The agent demonstrates it can exploit knowledge of the cur-
rent frame to provide an optimal acquisition sequence for
the next reconstruction. For the in-vivo data, a comparison
of the SSIM scores for different subsampling factors, both
for random and learned sampling by AiVUS, is visualized in
Fig. 3. For higher subsampling factors, the learned strategy
is preferred, while for a subsampling factor of two there is
almost no performance difference.

5. CONCLUSION

In this paper, we have proposed a deep reinforcement learn-
ing framework that learns subsampling policies for IVUS on
a per-frame-basis using actor critic methods. The framework
allows for any non-differentiable reconstruction method and
quality metric. We have demonstrated that AiVUS is able to
navigate in controlled IVUS environments with high dimen-
sional state and action spaces. AiVUS outperforms a random
agent using a learned acquisition strategy. In future work, we
foresee this framework can be put to use for control of other
ultrasound transmit parameters.
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