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Abstract— Echocardiography has been a prominent tool
for the diagnosis of cardiac disease. However, these di-
agnoses can be heavily impeded by poor image quality.
Acoustic clutter emerges due to multipath reflections im-
posed by layers of skin, subcutaneous fat, and intercostal
muscle between the transducer and heart. As a result,
haze and other noise artifacts pose a real challenge to
cardiac ultrasound imaging. In many cases, especially with
difficult-to-image patients such as patients with obesity,
a diagnosis from B-Mode ultrasound imaging is effec-
tively rendered unusable, forcing sonographers to resort
to contrast-enhanced ultrasound examinations or refer pa-
tients to other imaging modalities. Tissue harmonic imag-
ing has been a popular approach to combat haze, but in
severe cases is still heavily impacted by haze. Alterna-
tively, denoising algorithms are typically unable to remove
highly structured and correlated noise, such as haze. It
remains a challenge to accurately describe the statistical
properties of structured haze, and develop an inference
method to subsequently remove it. Diffusion models have
emerged as powerful generative models and have shown
their effectiveness in a variety of inverse problems. In this
work, we present a joint posterior sampling framework
that combines two separate diffusion models to model
the distribution of both clean ultrasound and haze in an
unsupervised manner. Furthermore, we demonstrate tech-
niques for effectively training diffusion models on radio-
frequency ultrasound data and highlight the advantages
over image data. Experiments on both in-vitro and in-vivo
cardiac datasets show that the proposed dehazing method
effectively removes haze while preserving signals from
weakly reflected tissue.

Index Terms— Ultrasound, dehazing, cardiovascular, dif-
fusion models, deep generative prior, posterior sampling

I. INTRODUCTION

CARDIOVASCULAR ultrasound imaging or echocardio-
graphy has been one of the most important advances

in cardiac imaging due to its real-time nature and cost-
effectiveness. Cardiac ultrasound allows cardiologists to re-
view the basic functioning of the heart and detect abnormali-
ties which are prominent markers for cardiovascular diseases
that make up 31% of all global deaths [1]. Unfortunately,
transthoracic echocardiograms are subject to a range of dif-
ferent noise sources that clutter the image and limit inter-
pretability. Acoustic clutter, i.e. any unwanted echoes that
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degrade the image quality, is caused by phenomena such as
aberration and reverberation. A specific type of noise artifact,
known as haze, emerges due to multipath reflections imposed
by layers of skin, subcutaneous fat, and intercostal muscle that
acoustic energy has to traverse before reaching the heart [2].
Moreover, specular reflection of acoustic signals at the ribs
causes deflection of the propagation path. Combined, these
multipath signals culminate into a white diffuse haze over the
image, most dominantly present in the near-field. This effect is
especially significant in technically difficult-to-image patients
such as those with obesity or dense muscle structures, often
leading to nondiagnostic examinations [3].

Image quality is vital in cardiac ultrasound imaging, as
analysis of the structure and function of the heart relies
on careful interpretation of the brightness mode (B-mode)
sequence, both by the clinician and post-formation image
processing techniques [4], [5]. Hence, lower image quality
can limit functional diagnosis as both visual assessment and
quantitative analysis become challenging with hazy ultrasound
data. Tissue harmonic imaging was introduced to combat
deteriorating image quality in technically challenging patients
[6], [7]. Compared to fundamental imaging, harmonics contain
minimal clutter and noise. Multipath and distorted scatterers
are much weaker in energy and therefore generate fewer
harmonics leading to generally improved signal-to-noise and
contrast-to-noise ratios. However, harmonic imaging comes at
the cost of reduced penetration depth and image frame rate
(due to the additional pulse inversion transmits). Furthermore,
in many severe cases, the haze artifact persists even with
harmonic imaging. This results in costly repeat examinations,
either with contrast-enhanced ultrasound or referrals to other
image modalities (MRI / CT). This highlights the need for
improved image quality in cardiac ultrasound.

Deep generative modeling has gained traction in the medical
field and has successfully been used for image reconstruction
in MRI, CT, and ultrasound [8]–[12]. These data-driven meth-
ods are more powerful compared to classical methods, as they
can accurately learn the natural signal manifold and do not
rely on basic assumptions such as signal sparsity or hand-
crafted basis functions [13]. More recently, diffusion models
have proven to be able to accurately model complex and high-
dimensional data distributions. In contrast to discriminative
methods, diffusion models are a type of generative models and
can be trained on unlabeled and unpaired datasets which are
often costly to come by in the medical domain. Furthermore,
deep generative models are more flexibly applicable as the
training part is agnostic to the reconstruction task. This also re-
lates to improved generalizability across datasets, patients, and
even modalities, which discriminative methods often struggle
with [14], [15]. As diffusion models indirectly parameterize
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the data distribution through its gradient, they come with
some advantages compared to alternative generative models.
Diffusion models are easier to train relative to adversarial
approaches such as GANs, which suffer from modal collapse,
and have no restrictions on the neural architecture unlike
normalizing flows [16].

In this work, we adopt advances in conditional sampling
with diffusion models which seek to sample from a learned
data distribution given some measurement. More specifically,
we explicitly model both clean tissue and haze using separate
score-based networks. This allows us to capture the highly
structured and spatially correlated nature of haze, unlike many
methods that have a basic assumption on the noise distribution,
often to assure tractability. Additionally, we perform the entire
dehazing process including training of the priors in the radio-
frequency (RF) domain. This allows us to exploit phase
information still present in pre-envelope detected ultrasound
data, as well as linearly separate signal and haze sources early
in the signal chain. To test the proposed dehazing method we
perform tests in both a controlled phantom experiment and on
cardiac in-vivo datasets. With a classical denoising algorithm
as well as a supervised learning model as the baseline methods,
we show a consistent improvement in generalized contrast-to-
noise ratio (gCNR), whilst preserving more low-level tissue in
the process.

II. RELATED WORK

Fatemi et al., investigate the cause for reverberations leading
to artifacts commonly seen in cardiac ultrasound imaging [2].
They found several possible scenarios that generate strong
reverberation clutter, including multipath reflections caused by
tissue layers between the transducer and the heart, specular
reflections at the ribs, and blocking of the ultrasound beam by
the lungs. Furthermore, in their effort to compare fundamental
and harmonic imaging, haze is often reduced using the latter
technique. Still, haze persists in many of the examples showing
the need for improved techniques.

Post-processing methods for clutter mitigation, using meth-
ods such as block-matching and 3D filtering algorithm
(BM3D) [17], [18] or wavelet-based denoising [19], are typi-
cally based on computing local statistics and impose basic as-
sumptions on the noise distribution. Furthermore, image-based
denoising methods are often paired with inherent speckle
reduction or smoothing. Speckle alone is generally not the
cause for limited visibility of important cardiac features and
in many cases advantageous for the preservation of finer detail
and methods relying on speckle tracking [20].

Sjoerdsma et al., introduce a near-field clutter filter that
operates in the spatial frequency domain [21]. Their method
preserves speckle and addresses the haze in the near field using
post-envelope detected image data. However, their method was
optimized for strain computation and suppresses tissue at the
myocardial boundary, obfuscating finer low-level structures.

Methods based on temporal decompositions such as prin-
cipal component analysis (PCA) and singular value decom-
position (SVD) [22]–[24] leverage the stationarity of clutter
with respect to more rapidly moving tissue. However, there are
cases in the cardiac cycle where this assumption does not hold

A B

Fig. 1. Echocardiograms of easier (A) and difficult-to-image patients (B).

such as for tissue at end-diastole or generally more stationary
myocardial regions. Hence, in these instances, the lack of
sophistication of the temporal prior inhibits these methods to
separate tissue from the clutter.

Deep learning has become a popular tool for ultrasound
image processing [11], [13], [25]–[29]. More specifically,
Jahren et al. present a supervised learning approach to sup-
press reverberation clutter in cardiac ultrasound using beam-
formed data [30]. In contrast to the proposed work, their
method is discriminative, lacking the aforementioned advan-
tages of generative models such as diffusion models.

Despite the recent success of diffusion models, their
relevance to ultrasound has seen very limited exploration [31],
[32]. Nonetheless, diffusion models for image reconstruction
have been successfully applied to other modalities in the
medical field, such as CT and MRI [10], [12], [33].

The remainder of the paper is organized as follows. In
Section III, we provide a formulation of the dehazing process
(III-A), give background on score-based diffusion models (III-
B), and introduce our ultrasound dehazing method (III-C). Our
main contributions involve methods for efficiently learning
ultrasound priors using diffusion models and combining them
to perform posterior sampling for dehazing. The results on
both phantom and in-vivo experiments are given in Section IV.
Lastly, we discuss the results in Section VI and derive con-
clusions in Section VII.

III. METHODS

In this section, we start by providing the reader insight into
the ultrasound acquisition process and the specific formulation
used leading to a probabilistic framework for dehazing. We
then turn our attention to diffusion models and how we can
efficiently learn ultrasound priors in the RF domain for the
dehazing task.

A. Ultrasound image formation
The beamformed ultrasound signal can be considered a

coherent summation of individual ultrasonic backscattered
echoes. These scatterers originate from small structures in
the tissue. As a result, we can group the signals reflected by
the tissue x and all multipath haze signals h, leading to the
following additive model:

yRF = xRF + hRF, (1)

where y is the ultrasound measurement. For clarity, if neces-
sary, subscripts are added to denote quantities as beamformed
radio-frequency (RF) data. A schematic of the measurement
process is shown in Fig. 2. The ultrasound image, also known
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Fig. 2. Simplified schematic of a phased array transducer performing an
echocardiogram that shows a possible scenario of how the ultrasound
energy can traverse through the skin and underlying tissue structures.
We decompose the receiving ultrasound energy into haze signals h
(multipath reverberation) and tissue signals x.
as the B-mode image, is obtained by envelope detection and
log compression of the RF data. We here pose the dehazing
problem as a source separation task, where we would like to
retrieve the clean ultrasound signal x from the measurement y.
This inverse problem is generally ill-posed, as there are many
possible solutions that satisfy (1). Following a probabilistic ap-
proach, sampling from the posterior distribution pX,H(x,h|y)
allows us to find optimal x̂ and ĥ given the measurement y and
prior knowledge. To compute the posterior, we can factorize
it using Bayes’ rule as follows:
(x,h) ∼ pX,H(x,h|y) ∝ pY |X,H(y|x,h) · pX(x) · pH(h),

(2)

where pY |X,H(y|x,h) is the likelihood according to our
measurement model in (1) and pX(x) and pH(h) are prior
distributions for the clean ultrasound signal and haze, re-
spectively. Note that, unlike many (denoising) methods, we
consider the noise distribution to be any arbitrarily complex
distribution and thus not necessarily Gaussian distributed, i.e.
pH(h) ̸= N . This is an important distinction, given the
fact that haze is a noticeably more structured and spatially
correlated type of noise.
B. Score-based diffusion models

In this work, we opt to learn the prior distributions of
clean ultrasound RF data and haze using score-based diffu-
sion models [34]–[36]. These deep generative models aim
to reverse a diffusion process, which corrupts clean data
x0 ∼ p(x0) ≡ p(x) to some predefined base distribution
p1(x) ≈ π(x) through a sequence of Gaussian perturbations
indexed by time t ∈ [0, 1]. The forward diffusion process can
be described using a stochastic differential equation (SDE) as
follows:

dxt = f(t)xtdt+ g(t)dw, (3)

where w ∈ Rd is a standard Wiener process, f(t) : [0, 1]→ R
and g(t) : [0, 1] → R are the drift and diffusion coefficients
that account for the deterministic and stochastic parts of the
diffusion process, respectively.

Naturally, we are interested in reversing this diffusion
process, so that we can sample from x0 ∼ p(x0). The reverse

diffusion process is also a diffusion process given by the
reverse-time SDE [35]:

dxt =
[
f(t)xt − g(t)2∇xt log p(xt)︸ ︷︷ ︸

score

]
dt+ g(t)dw̄t, (4)

where w̄t is the standard Wiener process in the reverse direc-
tion. The gradient of the log-likelihood of the data with respect
to itself, a.k.a. the score function, arises from the reverse-time
SDE. The score function is a gradient field pointing back to the
data manifold and can intuitively be used to guide a random
sample from the base distribution π(x) to the desired data
distribution p(x0). The score function itself can be learned by
a neural network sθ(xt, t) parameterized by weights θ. These
weights can be optimized using score-matching techniques,
such as denoising score-matching (DSM) [37]. The objective
of DSM is given by:

θ∗ = argmin
θ

Et∼U [0,1]

{
E(x,xt)∼p(x)q(xt|x)[

∥sθ(xt, t)−∇xt
log q(xt|x)∥22

]}
, (5)

where q(xt|x0) ∼ N is the perturbation kernel of the
diffusion process which is also Gaussian due to the prop-
erties of the SDE. Given a sufficiently large dataset X ={
x
(1)
0 ,x

(2)
0 , . . . ,x

(|X |)
0

}
∼ p(x0) and enough model capac-

ity, DSM enables approximating the true score sθ(xt, t) ≃
∇xt

log p(xt). During inference, we can substitute our learned
score in (4) and discretize the reverse-time diffusion process
into a sequence of time steps {0 = t0, t1, . . . , tT = 1}. Nu-
merical samplers such as the Euler-Maruyama method [35]
can be used to solve the discretized reverse-time SDE in an
iterative fashion using the trained score network. The update
rule for this inference procedure is given by:

xt−∆t ← xt + [f(t)xt − g2(t)sθ(xt)]∆t+ g(t)
√
|∆t|z, (6)

with z ∼ N (0, I). During the reverse-time diffusion process,
the solution is iteratively moved towards the learned data
manifold using a deterministic score-based denoising term
and corrupted again by a stochastic noise injection term.
The latter helps correct errors made in earlier sampling steps
and prevents solutions from solely converging to high-density
regions [36], [38].

C. Ultrasound dehazing
In this section, we proceed with technical details on how

we use diffusion models to perform posterior sampling for the
dehazing task. We aim to condition the sampling process on a
given measurement y, i.e. the hazy acquisition. Additionally,
we provide practical advancements that were necessary to
efficiently learn and apply priors for ultrasound data.

1) Joint posterior sampling: Two prior distributions can be
combined during posterior sampling by sampling from them
in parallel whilst conditioning on the measurement, which was
shown in [39]. By incorporating an explicit noise prior, we are
able to learn and utilize complex noise distributions pH(h) to
effectively eliminate any such noise from the measurement y.
In terms of diffusion modeling, this joint posterior sampling
process pX|Y (x,h|y) is achieved through the formulation of
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Fig. 3. Dehazing diffusion process, where the reverse diffusion trajectory is displayed from left to right for both signal (top) and haze (bottom) in
parallel. Each reverse diffusion step is carried out by a denoising U-Net that models the score s(·) related to either signal or haze. During each
step of the posterior sampling process, data consistency is promoted through the measurement model yRF = xRF + hRF.

a joint conditional diffusion process {xt,ht|y}t∈[0,1], in turn
producing a joint conditional reverse-time SDE:

d(xt,ht) =
[
f(t)(xt,ht)− . . .

g(t)2∇xt,ht
log p(xt,ht|y)

]
dt+ g(t)dw̄t, (7)

which is essentially an extension of 4, with the inclusion of the
haze distribution (joint) and conditioning on the observation
(conditional). Instead of the prior gradient that was derived
in the unconditional sampling case, see (4), the posterior
gradient appears. We can apply the Bayesian factorization in
(2) to construct two separate diffusion processes, defined by
separate score models but entangled through our haze forward
model pY |X,H(y|x,h), see (1). In addition to the original
score model sθ(x, t), we introduce a second score model
sϕ(ht, t) ≃ ∇ht

log pH(ht), parameterized by weights ϕ, to
model the haze. These two score networks can be trained on
clean ultrasound and haze datasets independently, using the
objective in (5). The gradients of the posterior with respect to
x and n are now given by:{
∇xt log p(xt,ht|y) ≃ s∗θ(xt, t) +∇xt log p(y|xt,ht)

∇ht
log p(xt,ht|y) ≃ s∗ϕ(ht, t) +∇ht

log p(y|xt,ht).
(8)

Substituting the posterior in our reverse-time SDE
formulation allows us to sample from the posterior and effec-
tively obtain the dehazed output x as well as an estimation of
the haze h. It should be noted that the true noise-perturbed
likelihood p(y|xt,nt), which appears in (8), is generally
intractable, unlike p(y|x0,n0). Different approximations have
been proposed by [40], [41] and [42]. In this work, we
opt for a solution used in [35], which essentially corrupts
the observation y along the diffusion process {yt}t∈[0,1] to
obtain the projected value ŷt ∼ q(yt|y0) which results in
an approximated version of the noise-perturbed likelihood
p(y|xt,ht) ≈ p(ŷt|xt,ht) = N (xt + ht, ρ

2I), which we
assume to be Gaussian with diagonal variance ρ2. Although
more sophisticated likelihood approximations for the joint
diffusion method have been explored in [39], we find that the
aforementioned method is sufficient for the dehazing task in
this study, while also being computationally less expensive.

2) Learning ultrasound priors: The vast majority of appli-
cations that involve learning generative models are trained
in the image domain. Subsequently, the design choices that

work well with image data are well-established. However,
when it comes to ultrasound data, it is less obvious how to
present the data. Learning priors on pre-envelope detected
ultrasound data requires careful design of the preprocessing
stages and generative network. In practice, we found that the
straightforward adoption of current methods for image data did
not translate well to the ultrasound domain. Most notably, the
high dynamic range of ultrasound data is an issue for training
a prior. Fig. 5 shows a histogram comparison between raw
RF and image ultrasound data. Because the majority of the
RF samples are concentrated around the center pixel value,
activation functions within the neural network are not operated
in their optimal range, which stagnates the training progress.
This makes it impractical to learn generative models on raw
ultrasound data. To that end, we borrow a technique named
companding, that originates from the telecommunication and
audio fields [43]. Companding is an invertible operation that
can compress and expand the dynamic range of a signal. We
here focus on the µ-law companding algorithm, consisting out
of the compression, i.e. µ-law encoding:

C(xRF) = sgn(xRF)
ln(1 + µ|xRF|)

ln(1 + µ)
, −1 ≤ xRF ≤ 1, (9)

and its inverse, the µ-law expansion being:

C−1(x) = sgn(x)
(1 + µ)|x| − 1

µ
, −1 ≤ x ≤ 1, (10)

where µ = 255 is a parameter that determines the amount
of compression applied, see Fig 4, and x should be nor-
malized first to the range [−1, 1]. Effectively, companding
will transform the signal to the logarithmic domain (positive
and negative parts piecewise using the sign function sgn(·)),
reducing its dynamic range. It has the useful property of
invertibility such that xRF = C−1(C(xRF)). An example of
the companded data is shown in Fig. 5, which resembles the
distribution of image pixel values more closely compared to
plain RF data. Most conditional or guided diffusion methods
focus on problems where the conditioning is applied in the
same domain or a linear transformation thereof as the learned
prior. However, in the case of ultrasound dehazing, as formu-
lated in this work, the measurement domain (RF) is different
from the domain of the diffusion trajectory (companded RF).
We therefore expand the companded RF data during the data
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xRF

C(xRF), = 255

C(xRF), = 50

Image

C 1(C(xRF))

Fig. 4. RF signals alongside their companded versions. The µ value is
tuned to more closely resemble the distribution of the image pixel values.

consistency step to ensure it conforms with (1)

∇xt log p(y|xt,ht) ≈ ∇xt log p(ŷt|xt,ht) = . . .

= λ∇xt
∥ŷt − C(xRF,t + hRF,t)∥22

= λ∇xt

∥∥ŷt − C(C−1(xt) + γC−1(ht))
∥∥2
2
, (11)

where λ encompasses the likelihood variance ρ2 and can also
be seen as a weighting term for the importance of the measure-
ment error with respect to the prior, which is common practice
in Bayesian inference. Furthermore, we introduce a parameter
γ which effectively specifies the desired signal-to-haze ratio.
Notice how the ℓ2-norm is applied in the companded domain,
rather than the RF domain, to align the gradients with the
score steps. A similar approach is followed to arrive at the
likelihood term for the haze component ∇ht log p(ŷt|xt,ht),
alongside the introduction of a second weighting term κ. We
use Tensorflow’s automatic differentiation to automatically
compute the gradients for the data consistency steps. See
Algorithm 1 for a more complete overview of the dehazing
by joint posterior sampling method.

3) Patch based inference: The prior distribution can be
factorized into multiple patches for computational efficiency
(reducing memory footprint) and better generalization of the
generative network. Regarding the latter, a patch-based ap-
proach can mitigate overfitting to specific anatomical struc-
tures and geometries in the train set. The patch-based inference
effectively reduces the receptive field of the network, which
has been shown to mitigate overfitting to the train set and
improve generalization [44].

Independently running inference on each patch separately
seems a straightforward solution, but results in unnatural
stitch artifacts - even when overlapping patches and window-
based averaging are applied. Diffusion models allow for more
sophisticated schemes to generate larger content [45]. A simple
yet effective solution is the mask-shift trick, introduced by
[46], which solves this issue by enforcing coherence between
reconstructed patches. It interleaves the diffusion process of
neighboring patches, by replacing overlapping parts of the
current patch with the adjacent patches at each time step of
the iterative algorithm. Inspired by this, we apply a similar
technique by factorizing the observation y into N×M patches
with some overlap between adjacent patches, see Fig. 6:

y = [y(0,0), . . . ,y(n,m), . . . ,y(N,M)]. (12)

Algorithm 1 Dehazing by joint posterior diffusion sampling
Require: T, sθ, sϕ, λ, κ,y, tτ , γ
set ∆t← 1

T , z ∼ N (0, I)
set y = C(yRF) // companding

set [y(0,0), . . . ,y(n,m), . . . ,y(N,M)]← y // factorize

set xtτ ← αtτy + βtτ z, htτ ← xtτ // initialization

// Reverse diffusion steps

1: for t = tτ to 0 step ∆t do
2: // Loop through patches

3: for n = 0,m = 0 to N,M do
4: // Denoting x(m,n) as x for shorthand

5: log p(ŷt|xt,ht)← . . .∥∥ŷt − C(C−1(xt) + γC−1(ht))
∥∥2
2

6: // Data consistency steps

7: xt ← xt + λ∇xt
log p(ŷt|xt,ht)

8: ht ← ht + κ∇ht
log p(ŷt|xt,ht)

9: // Reverse diffusion steps

10: xt−∆t ← xt − f(t)xt∆t
11: xt−∆t ← xt−∆t + g(t)2s∗θ(xt, t)∆t
12: z ∼ N (0, I)
13: xt−∆t ← xt−∆t + g(t)

√
∆tz

14:
15: ht−∆t ← ht − f(t)ht∆t
16: ht−∆t ← ht−∆t + g(t)2s∗ϕ(ht, t)∆t
17: z ∼ N (0, I)
18: ht−∆t ← ht−∆t + g(t)

√
∆tz

19: // Dropping shorthand notation

20: // Interleave patches
21: for A in {(n,m−1), (n−1,m), (n−1,m−1)} do
22: x

A∩ (n,m)
t = x

(n,m)∩A
t

23: h
A∩ (n,m)
t = h

(n,m)∩A
t

24: end for
25: end for
26: end for
27: x0 ← [x(0,0), . . . ,x(N,M)] // patch stitching

28: xRF ← C−1(x0) // expanding

output xRF

We perform a single conditional diffusion step on all patches
separately which results in samples [x(0,0)

t , . . . ,x
(N,M)
t ]. Next,

we replace all overlapping pixels of the adjacent patch with
the current patch as follows:

x
(n,m−1)∩(n,m)
t = x

(n,m)∩(n,m−1)
t , (13)

where we use the intersection symbol A ∩B to denote the
pixels from patch A that overlap with pixels from patch B. In
this case, (13) shows the patch replacement for the patch to the
left of the current patch (n,m− 1). Naturally, we also apply
the patch replacement to the other adjacent patches at indices
(n−1,m−1) and (n−1,m). After T diffusion steps, we can
reconstruct the dehazed image by combining the overlapping
patches as follows:

x0 = [x(0,0), . . . ,x(N,M)]. (14)

Because of the interleaving of the patches with the diffusion
process, no windowing or averaging has to be applied to the
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Fig. 5. A comparison of radio-frequency (RF), companded RF, and
image of four arbitrary ultrasound patches from the in-vivo training
dataset (left to right). A histogram comparison reveals the high dynamic
range of the RF data which after normalization predominantly occupies
the center region of pixel values.

overlapping parts, as they are already consistent. Note that
we can dehaze the individual patches in parallel and are not
reliant on autoregressive methods which would substantially
slow down the inference [47].

4) Haze estimation: The proposed inference scheme consid-
ers the haze to be unknown, and it is not necessary to compute
any local noise statistics to do haze estimation at test time as
we will simply use the learned haze prior. Using generative
modeling, the full complexity of the haze distribution can be
captured and applied, without relying on basic assumptions or
estimations during inference. However, learning a prior on the
haze signal requires a collection of (surrogate) haze signals
H =

{
h
(1)
0 ,h

(2)
0 , . . . ,h

(|H|)
0

}
∼ p(h0) to learn the haze

distribution in advance (train time). The advantage is that we
do not require ultrasound measurements with matching haze
signals. A collection of stand-alone haze signals will suffice,
which provides great flexibility in how the haze dataset can
be acquired.

For instance, hazy signals can be independently acquired in
an experimental environment using a dedicated haze phantom,
such as a stainless steel scouring pad in an empty water
tank [48]. The phantom induces high-order multiple scattering,
simulating the multipath reflections within the chest wall,
which are the major contributors to the haze signal [2].

Alternatively, haze signals can be estimated from a noisy
measurement by extracting off-axis energy, mainly side lobes
and clutter. Using two inverted apodization schemes, the main
lobes can be canceled by coherent subtraction of the two
separately beamformed images. Assuming haze scatters are
detected from every direction, in low SNR regions the off-axis
energy is dominated by clutter and can be used to estimate the
haze. To further ensure minimal signal leakage into the haze

dataset, we leverage the fact we are training on patches and
preprocess the dataset by sampling patches that are more likely
to contain haze using focus measures, as was done in [11].

5) Initialization: As presented in [49], come closer diffuse
faster (CCDF) provides a superior initialization method com-
pared to sampling from the base distribution x1 ∼ π(x).
CCDF is an accelerated sampling scheme that starts the reverse
diffusion at some time tτ where t0 ≤ tτ ≤ tT , which simul-
taneously reduces the number of diffusion steps necessary to
tτ · T and provides a better initial estimate derived from the
measurement through forward diffusion xtτ = αtτy + βtτ z.
We here extend CCDF to work with the proposed joint
posterior sampling scheme. Both clean ultrasound signal xtτ

and haze htτ initial estimates are initialized using a forward
diffusion step towards t = τ from the measurement y. This
initialization allows us to reduce the number of sampling steps,
hence speeding up the inference procedure. τ is chosen in
such a way that no noticeable loss in reconstruction quality is
observed in comparison with Gaussian initialization.

6) Training and inference details: For both the tissue and
haze score models, we use the NCSNv2 architecture as in-
troduced in [50]. Both score models are trained on patch
datasets of size 128×64 denoting axial and lateral dimensions,
respectively for 100 epochs, with batch size of 8 images and
learning rate of 1e−4. During training, augmentation is applied
through a random left-right flip with equal probabilities and
a random brightness offset uniformly sampled between the
values ±0.1 given an image range of x ∈ [0, 1]. The dataset
is normalized to this range based on its extreme values. In the
rare event the augmentation exceeds the set normalized range,
values are clipped. During inference, the two trained networks
are combined through the proposed sampling procedure as
described in Algorithm 1. We use the following SDE: f(t) =
0, g(t) = σt with σ = 25 to define the diffusion trajectory,
resulting in αt = 1 and βt = 1

2 log σ (σ
2t − 1). During each

experiment, we run the sampler for T = 200 steps, starting at
τ = 0.8, which proved to be sufficiently long for producing
adequate samples. Empirically, we found that weighting values
close to λ ≈ 0.5 and κ ≈ 0.5 work well. We use a 10% overlap
between adjacent patches to interleave the diffusion process as
described in Section III-C.3. To emphasize a fair comparison,

Fig. 6. Patch-based inference with
N × M overlapping patches.

we perform hyperparame-
ter tuning for all experi-
ments and (baseline) meth-
ods only on a small sub-
set of 5 images. All ex-
periments and training of
the models were done on
a single 12GBytes NVIDIA
GeForce RTX 3080 Ti. The
implementation was carried
out using Python 3.10 and
TensorFlow 2.10. The code
for the joint diffusion al-
gorithm is made publicly
available1.

1dehazing-diffusion.github.io
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IV. EXPERIMENTS

To test the proposed method, we conducted two different
experiments. In the first experiment, we set up a controlled
environment with heart and haze phantoms (in-vitro). In the
second experiment, we use hazy in-vivo cardiac ultrasound
data. All experimental data is recorded using an X5-1C matrix
phased array transducer connected to a Philips EPIQ scanner
(Philips Research, North America). The transducer has a
frequency range of 1MHz to 5MHz and all acquisitions are
made using harmonic imaging.

Even though the proposed dehazing method operates in the
RF domain, all metrics (see sections IV-A, IV-B) are computed
after log-compression and envelope-detection (B-mode), since
the images are eventually displayed in that format. Lastly,
all images are brightness matched by matching the average
intensity of the top 10% pixel values and plotted in the same
dynamic range of 60 dB for a fair visual comparison.

A. In-vitro

To thoroughly examine the method’s behavior, we con-
ducted a controlled test using a heart phantom and a dedicated
haze phantom (as described in Section III-C.4). This allowed
us to collect two distinct sets of beamsummed RF data. These
datasets were utilized to train the two diffusion models, sθ
and sϕ, respectively. We acquired a total of 2 × 150 frames
for the training dataset and 2×38 frames for validation, of both
the heart and haze phantoms separately. During inference, we
artificially add the haze signal to the heart phantom ultrasound
data with varying haze levels to imitate the haze process
and set the desired haze-to-signal ratio. This enables us to
compare the dehazed output to the ground truth, ensuring that
the extracted haze aligns with the desired haze distribution.

B. In-vivo

In a second experiment, we train and deploy our method
on an in-vivo cardiac ultrasound dataset. In total, we ac-
quired ultrasound data from five different human volunteers
and used four different commonly used views to record the
echocardiograms. Namely the apical three- and four-chamber
view (AP3/AP4), parasternal long axis (PLAX), and short axis
(PSAX) views. Combined, the dataset comprises a total of
2640 frames collected from 6 volunteers. All 44 acquisitions
consist of 60-frame sequences, each covering approximately
a complete cardiac cycle. We divided this dataset into three
main subsets: 1) a training set, earlier denoted as X , con-
sisting of 1500 clean frames from three volunteers which
are used for training the tissue model, 2) a validation set
comprising of 1020 frames from two other volunteers for
validation of the proposed method, 3) another training set
with the remaining 120 frames of the last volunteer. The
latter two datasets are considered hazy and were acquired
from technically difficult-to-image subjects. To generate the
specialized haze-only training dataset H for training the
haze model, we use the acquisitions from the third dataset
combined with the relatively hazy parts of the first training
dataset for augmentation. Subsequently, the generation of the
haze-only images involves the apodization method outlined
in Section III-C.4. This method extracts off-axis clutter by

cancelation of the main lobes, effectively eliminating tissue
signal and concentrating solely on haze characteristics. Lastly,
as part of our methodology, we deliberately reserved 5 images
from each of the tissue (1) and haze (3) training datasets. These
images are exclusively used for fine-tuning both training and
inference hyperparameters.

C. Metrics

As a quantitative measure, we compute the peak signal-to-
noise ratio (PSNR) between the dehazed output and ground
truth images. The PSNR is a pixel-wise difference metric that
normalizes the mean squared error between two images by the
image range to account for different intensity ranges across
examples. Unlike the in-vitro experiment, there is no ground
truth available for the in-vivo data. Therefore, we compute
the generalized contrast-to-noise ratio (gCNR) [51], which
is an unsupervised image quality metric, commonly used in
ultrasound, given by:

gCNR(I) = 1−
∫
x

min {pA(x), pB(x)} dx, (15)

where pA and pB are the probability density functions for each
of the regions of interest (ROIs). We compute a histogram
for each ROI to estimate its distribution and choose the
heart chamber (ventricle) near the apex (typically the most
challenging and most hazy region) as region A and part of
the ventricular septum (wall) as region B. Most notably, the
gCNR is not biased by dynamic range stretching and can thus
provide a fair comparison independent of specific brightness
settings.

To ensure accurate results, we manually draw two masks as
ROIs for seven equidistant frames in each of the 60-frame
sequences in the dataset, using a lasso selection tool. For
the remaining frames, the masks are determined by linearly
interpolating the vertices of a polygon, which are fitted to each
mask using the Douglas-Peucker algorithm. This approach
provides us with larger and more precise regions that move in
synchronization with the cardiac cycle, as opposed to relying
on a single set of ROIs per sequence. On average, the areas
for regions A and B are 14 cm2 and 8 cm2, respectively.
We remove outliers by eliminating the scores below the 10th
percentile obtained from the measurement frames, as these
frames are assumed to have inaccurate ROIs. Since we remove
outliers based on scores from the raw harmonic data, this
should not favor any of the proposed or baseline methods.

Additionally, we utilize the Kolmogorov-Smirnov (KS) test
to assess the ability of dehazing methods to retain speckle
statistics in the myocardium regions. Furthermore, we inves-
tigate how the dehazing methods affect the ventricle region,
which is expected to predominantly contain haze and no tissue
signal. The KS statistic is defined as the greatest distance
between the empirical distributions of two samples and serves
as a measure of statistical similarity.

Lastly, since the KS test only considers pixel statistics
independently, we more closely investigate speckle character-
istics, by estimating the speckle size. This provides us with a
measure of the lateral resolution and insight into the spatial
preservation of statistics. The speckle size is evaluated through
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Ground truth x Haze h Measurement y NCSNv2 BM3D Diffusion

01
Fig. 7. In-vitro results using the phantom data. The ground truth ultrasound x and haze signals h which are used to construct measurement y
are shown on the left. RF-based dehazing results are on the right, for both the baseline methods (BM3D and NCSNv2) and the proposed diffusion
method. For the latter, we show posterior solutions for both the ultrasound and haze signals (lower inset plot to the right). For all methods, we show
error plots that highlight the difference between ground truth and dehazed images, with the proposed diffusion method notably dropping less signal.

Fig. 8. Varying amount of dehazing using tunable haze amplitude
parameter γ. A lateral cross-section is shown for a more detailed
comparison. The exact slice is indicated by the white dashed line.

measurement of the Full-Width at Half-Maxima (FWHM) of
the lateral main lobe of the two-dimensional autocorrelation
taken from the myocardium region in the polar domain. The
same ROIs as for the gCNR computation are used for both
the KS test and the FWHM estimation.

D. Baselines

As a baseline method, we use the block-matching and
3D filtering algorithm (BM3D) [17]. BM3D has been a
popular noise suppression algorithm and has recently been
adopted for ultrasound [18]. BM3D outperforms transform-
based denoisers, which often fail to preserve details that are not
represented in the 2D transform domain. Furthermore, BM3D
is general concerning the type of noise. We adapted and fine-
tuned BM3D for the cardiac dehazing problem to create a
competitive baseline. To that end, we deploy BM3D in the RF
domain, as the image domain results mainly introduce blurring
of the images without any dehazing effect.

Additionally, we compare the proposed technique with a
deep learning method. Specifically, we use a supervised deep
learning approach, training the model end-to-end to tackle
the dehazing task on a paired dataset. Although not readily
available in the literature for dehazing, the U-Net has been the
go-to neural architecture in medical image restoration. For a
fair comparison, we use the same backbone network, NCSNv2,

used in our diffusion approach, which is also a U-Net type
network. We train the supervised network on the RF phantom
dataset, as we only have pairs for this dataset. This is the
inherently limiting part of the supervised approach.

E. Downstream delineation task

In the context of ultrasound imaging for cardiac assessment,
downstream tasks can serve as valuable metrics to quantify
the effectiveness of dehazing algorithms presented in this
paper. Besides automated tasks, manual labeling of cardiac
images can be performed easier and quicker given improved
image quality. One common cardiac measurement involves the
delineation of the ventricle, which is used for the calculation
of parameters like ejection fraction [52]. Ejection fraction is a
key indicator of heart function and is used to assess the heart’s
ability to pump blood efficiently. Accurate assessment of the
volume of the cardiac chamber is critical for proper diagnoses.
In this experiment, we use a pretrained EchoNet [53] for
delineation of the left ventricle and compare masks produced
using the unprocessed harmonic imaging data as input with
masks produced using diffusion-processed images. For this ex-
periment, we filter our dataset on apical views only as EchoNet
was trained on these. Furthermore, we slightly changed the
masks used in the other experiments to better match the masks
produced by EchoNet, which often included the valves (which
we want to exclude for proper gCNR estimation).

V. RESULTS
A. In-vitro

Fig. 7 shows dehazing results on the phantom data. The
RF-based diffusion dehazing method can reconstruct realistic
dehazed images with improved contrast as well as provide
plausible haze estimations. Both baseline methods (BM3D,
NCSNv2) can remove most of the haze but at the cost of
dropping signal from low-level tissue (typically endocardium).
This is often not acceptable in clinical practice as it hinders
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Fig. 9. Comparison of dehazing methods with harmonic imaging for
varying levels of haze in the in-vitro experiment. Shown are the average
and standard deviation (shaded areas) of the PSNR over all frames. All
pairs of PSNR scores pass the Welch’s t-Test for statistical significance
(p < 0.05), except for BM3D and DIFF at haze level 0.1, and NCSNv2
and measurement at haze level 0.2

proper contouring of the left ventricle, in turn prohibiting
accurate volume analysis or tracking for strain estimation.
Lastly, we compare the proposed method against the baseline
at various haze levels in Fig. 9 and see an improved PSNR
score across all haze levels.

B. In-vivo
The quantitative results on the dehazing of the in-vivo are

summarized in Fig. 10 and 11, respectively. Fig. 10 shows
gCNR scores for both of the difficult-to-image subjects in
the validation set, while Fig. 11 shows results for each of
the four different acoustic windows. The spread in scores
for each method can be mainly attributed to the variety of
haze severity across sequences. Nonetheless, a clear pattern
in the gCNR scores is detected. Compared to straightforward
harmonic imaging, the BM3D method results in comparable
and sometimes lower gCNR scores. This can be attributed to
the excessive removal of signal by BM3D, which was also seen
in the in-vitro experiment. In contrast, the proposed diffusion
method yields improved gCNR scores. Unlike the relatively
good performance of the NCSNv2 supervised method on
the phantom data, it fails to effectively remove the haze
on the in-vivo data, as expected for out-of-distribution data.
Fig. 12 shows the KS test results on the in-vivo dataset.
Most notably, it can be seen that the proposed method retains
speckle statistics in the myocardium region while altering
the contents of the ventricle (read dehazing). Concerning
the lateral resolution of the dehazing methods, the diffusion
method strikes a balance between improving contrast, without
sacrificing spatial resolution, see Fig. 13. In comparison, the
BM3D method compromises significantly on resolution, which
is a common problem in denoising algorithms due to their
smoothening nature.

A qualitative comparison is made in Fig. 14, where a
representative set (bottom and top 10th percentile and mean
gCNR scores) of the dehazed B-mode images is shown. A
wider range of examples, including full cine-loops can be
found on the online repository. From Fig. 14 we observe that
our diffusion method is more effective in removing haze com-

I II
Subject

0.5

0.6

0.7

0.8

0.9

1.0

gC
N

R

0.79 0.83
0.79 0.86

0.81 0.80
0.82 0.86

Measurement BM3D NCSNv2 DIFF

Fig. 10. gCNR scores on the in-vivo dataset grouped into separate sub-
jects, comparing the raw harmonic images with baseline and proposed
methods. Each dot represents a time frame within the acquisitions.

pared to the supervised method. More importantly, apart from
improved contrast, the proposed diffusion method retains and
in some cases even reveals low-level tissue. Even though the
in-vivo data is out-of-distribution for the NCSNv2 model, the
network can produce decent reconstructions due to the patch-
based approach, showcasing the robustness of patch-based
inference. Additionally, we show the posterior haze samples
from the diffusion dehazing method, which resemble the haze
samples used for training. We moreover observe that we can
efficiently fine-tune the amount of dehazing by controlling the
haze amplitude parameter γ in the data-consistency step of
our diffusion model. Note that this tunability is an inherent
feature of the proposed reverse diffusion scheme with explicit
data-consistency steps, and e.g. requires no gamma-specific
training, in contrast to supervised methods, e.g. NCSNv2.
Fig. 8 shows a comparison for varying γ-settings. The ability
to fine-tune the algorithm’s aggressiveness is highly beneficial,
as optimal image quality is often subject to the personal
preference of the user, which can significantly vary in clinical
practice. Furthermore, sweeping the dehazing intensity allows
the user to assess the quality of the output and set the
optimal trade-off point with reduced haze and minimal signal
loss, with the latter being crucial for diagnostic confidence.
Automatic preference-based tuning of this parameter is an
avenue for future work. Lastly, we assess the performance of
the proposed diffusion method using a downstream delineation
task as outlined in Section IV-E and observe that the diffusion-
based processing aids EchoNet in producing more accurate
delineations (Dice=0.891) compared to the hazy original image
(Dice=0.880), as seen in Fig. 15. The Dice coefficients are
averaged over the entire test set and computed with respect to
the ground truth masks.

VI. DISCUSSION

In this study, we developed a dehazing method for cardiac
ultrasound imaging using a new joint posterior reverse dif-
fusion scheme. Additionally, we propose various techniques
that allow the learning and deployment of ultrasound priors in
the RF domain. We show the benefits of RF-based dehazing
over dehazing in the image domain. The proposed method

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3363460

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, DECEMBER 2023

AP3 AP4 PLAX PSAX
View

0.5

0.6

0.7

0.8

0.9

1.0
gC

N
R

0.89 0.76 0.76 0.88
0.89 0.78 0.81 0.89

0.90 0.72 0.74 0.84
0.91 0.81 0.80 0.90

Measurement BM3D NCSNv2 DIFF

Fig. 11. gCNR scores on the in-vivo dataset grouped into the four
different views, comparing the raw harmonic images with baseline
and proposed methods. Each dot represents a time frame within the
acquisitions.
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Fig. 12. Kolmogorov-Smirnov statistic for testing statistical similarity
of the speckle in the myocardium and ventricle regions, pre- and post-
dehazing. From left to right, we compare each of the two different re-
gions of dehazing methods with the original data. The diffusion method
retains the speckle statistics in the myocardium region, while clearly
altering the contents from the ventricle. In contrast, the NCSNv2 method
is not able to suppress haze in the ventricle area, leading to more similar
statistics with respect to the input. As a reference, we also compare
KS statistics between the dehazed ventricle and myocardium regions
(middle column), which naturally are statistically different.
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Fig. 13. Depiction of the FWHM of the myocardium speckle against
the gCNR scores, depicting the inherent trade-off between contrast and
lateral resolution. Each ellipse represents the average and standard
deviation of each metric for that particular model. Our analysis reveals
that the diffusion method both obtains high contrast and preserves
lateral resolution, while the BM3D method compromises significantly on
resolution.

outperforms a competitive baseline (BM3D on RF data) across
in-vitro and in-vivo experiments, both quantitatively and qual-
itatively. We also observe that RF-domain diffusion dehazing
outperforms the baselines, by preserving weakly reflected
tissue signals, improving contrast, and retaining lateral res-
olution. Moreover, our patch-based inference scheme enables
artifact-free processing of an arbitrary amount of ultrasound
data and possibly can be extended to 3D ultrasound. Even
though the proposed method shows robustness in the phantom
to in-vivo experiments, it would be valuable to assess the
method’s performance across different ultrasound scanners,
settings, and a more diverse patient cohort, providing a broader
understanding of its adaptability and generalizability.

The proposed technique effectively separates tissue and haze
based on individual frames. In the future, we plan to extend
this by utilizing the slow-time axis. Knowledge of past frames
can potentially enhance the dehazing performance, as haze
characteristics can be distinguished from tissue characteristics
over time. Moreover, incorporating previous solutions has the
potential to expedite the inference process, as subsequent
frames are highly correlated and the current solution can be
used as initialization of the next frame. However, this aspect
requires further research.

Although not the focus of this work, the diffusion de-
hazing method is currently not ready for real-time, low-
latency, deployment. The iterative nature of the sampling
process combined with the necessity of two independent score-
based networks results in a high number of neural function
evaluations equivalent to 2 × T × τ . Therefore, the method
is currently intended for offline processing only. However,
the fast pace of advancements in diffusion models provides
a promising outlook on substantial speed-up of the reverse
diffusion process [54]. Given the flexibility of the proposed
method, improved sampling schemes are easily adopted, po-
tentially enabling real-time implementation in the future.

Another promising avenue for future exploration involves
the substitution of the standard Gaussian corruption process
with arbitrary degradation, as proposed by Bansal et al. [55].
Despite the lack of a firmly established theoretical framework
of their method for incorporating arbitrary noise, we find
merit in exploring this approach, especially within the context
of our work on dehazing. Specifically, the idea of utilizing
inherent haze as destructive noise in the reverse diffusion
process is a compelling strategy. However, more research into
the principles and effectiveness of this alternative approach is
needed to better understand its potential for ultrasound and
medical imaging as a whole.

More broadly, learning priors using deep generative models
in the RF domain as proposed in this work could find practical
use in various ultrasound applications, including aberration
correction and adaptive beamforming. By incorporating deep
priors at the beginning of the signal chain, these procedures
can take advantage of the richer nature of RF signals compared
to envelope-detected image data.

Lastly, we can exploit the data consistency weighting terms
for more fine-grained (or even adaptive) control of the amount
of dehazing. For instance, initial haze level estimations can be
used to construct depth-varying data consistency weighting.
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Fig. 14. In-vivo results on a random selection of the validation dataset consisting of difficult-to-image subjects. Before selection, images were sorted
based on the gCNR score of the proposed diffusion method and divided into groups related to the bottom-10 and top-10 percentile and mean (within
one standard deviation). We compare resulting B-mode images of the RF-based diffusion and supervised NCSNv2 dehazing methods. The smaller
inset plots show the haze posterior samples h0 associated with each dehazed posterior ultrasound image x0.
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Fig. 15. Downstream segmentation task with EchoNet on both
hazy input from straightforward harmonic imaging, versus the diffusion-
processed images. From the estimated masks, it can be seen that the
hazy input data causes EchoNet to underestimate the ventricle area
(yellow) with respect to the diffusion result (blue), which delineation is
more in line with the ground truth (red).

Unlike discriminative or supervised methods, this provides an
easy way to tune the method to taste as it requires no retraining
of the networks. We leave the exploration of the discussed
improvements for the proposed method for future work.

VII. CONCLUSIONS

To this day, many ultrasound cardiac exams are rendered
unusable due to severe degradation in image quality often
caused by haze. We show that existing techniques, such as
harmonic imaging, are incapable of delivering high-quality
B-mode imaging on difficult-to-image patients. In this work,

we propose an effective dehazing framework using diffu-
sion models that fully exploits our knowledge of the haze
distribution. We present ways to efficiently learn ultrasound
priors in the RF domain using deep generative modeling.
Even though this work specifically focuses on the dehazing
problem, the proposed posterior sampling method can be
applied to a wider range of inverse problems in ultrasound.
Ultimately, our method is able to achieve improved contrast
on the in-vivo cardiac data whilst preserving speckle statistics
and lateral resolution. Future work should investigate ways
of improving the computational efficiency of the method for
real-time deployment.
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