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ABSTRACT

Constant false alarm rate (CFAR) detectors are widely
used in radar systems for detecting target returns against
a background with thermal noise, clutter and interfer-
ence. Many different adaptive CFAR detector schemes
are already in use, however none prove to be optimal con-
sidering the presence of non-homogeneous background
environments. This paper proposes an alternative detec-
tor scheme through deep learning, showing that a deep
unfolded model-based network architecture significantly
outperforms conventional cell averaging (CA) CFAR,
as well as standard deep convolutional networks, under
challenging clutter and interference conditions.

Index Terms— Radar, CNN, CFAR, Unfolding,
Deep learning, Sparse decoding

1. INTRODUCTION

Constant false alarm rate (CFAR) detectors are used in
radar systems and are designed to achieve high correct
detection (with constant false alarm) rate in sub-optimal
environments. Specifically, in the cases where the noise
power is unknown and has to be estimated from the re-
ceived signal, adaptive CFAR is used to establish a local
threshold. One of the more conventional detectors is a
cell averaging (CA) CFAR detector, which determines its
threshold by evaluating the neighbouring cells of the cell
under test (CUT). CA CFAR assumes a homogeneous
background which is a condition that is often not realiz-
able in real world problems, suffering from performance
degradation when operating in a non-homogeneous envi-
ronment [1]. The unwanted radar returns that form the
basis of this environment are known as clutter.

Earliest research considers more general formulations
of the problem of detecting signals in non-Gaussian dis-
tributions [2] and non-stationary environments [3]. An-
other early work on the problem of target detection in
clutter focuses on the detection of target trajectory over
multiple scans [4], whereas detection through a single
scan is the focus of the current paper. Numerous other
studies on the utilization of neural networks (NN) in
radar applications for target detection in clutter envi-

ronments have been conducted [5][6][7][8][9][10]. The
previous research results either do not consider a non-
homogeneous background or construct a different imple-
mentation of the neural network. Other works on the
topic propose the use of neural networks to identify ho-
mogeneity of the background and select between CA-
CFAR and OS-CFAR [11][12][13]. The neural network is
not the detector in these studies.

Today, deep learning has been revolutionizing many
fields of research. Motivated by the deep-learning
promise, we here propose to leverage deep networks
as stand-alone radar detectors that are designed to re-
duce the probability of false alarm in the presence of
non-homogeneous clutter. We design a detailed clutter
model that replicates the clutter edges, closely spaced
targets and interference that form the basis of the in-
consistent background that is subject to the detector. A
comparison is made between the conventional CA CFAR
detector, a standard convolutional neural network radar
detector, and a dedicated deep unfolded model-based
network. Synthetic radar data, based on the aforemen-
tioned clutter model, is used to train the deep networks
as well as test the performance of the detectors.

2. SIGNAL PROCESSING

Frequency-modulated continuous-wave (FMCW) radar
technology is used to measure the range and speed of
a certain target, while ensuring good localization and
resolution. This method uses a burst of very short chirps
that ramp up in frequency. The transmitted signal is
given by

sTX
(t) =

N∑
n=0

cos
(

2π{fc(tn + nTchirp) + βt2n
2 }+ ϕ0

)
,

(1)
where N equals the number of pulses, fc is the carrier fre-
quency, Tchirp denotes the duration of the FMCW sweep,
β is the ramp of the sweep and φ0 is the initial phase.
For N pulses t = tn + nTchirp. The received signal or
”echo” sRX

is a reflected and time-delayed replica of the
transmitted signal with attenuation factor A. In order
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Fig. 1. Schematic overview of the complete signal pro-
cessing chain. N chirps of length S are transmitted and
received by the radar. The resulting Doppler image is of
size (N,S). The point target attributes, R̂0 and v̂ are
the estimated target location and speed respectively.

to extract the range and speed information from the re-
ceived signal, a mixing technique know as deramping or
dechirping is performed. The resulting signal is the out-
put of a frequency mixer with sTX

and sRX
as inputs.

The deramped signal sIF is given by the product of the
sTX

and sRX
and analytically calculated as

sIF (t) = sTX
(t) · sRX

(t) (2)

' A

2

N∑
n=0

cos
(

2π[ 2βR0

c︸ ︷︷ ︸
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nT + 2fcR0

c︸ ︷︷ ︸
ϕ

]
)
,

where R0 is the initial location of the target, v is its speed
and c denotes the speed of the FMCW signal. Both range
and speed can be determined by fb and fd respectively.
A full range-Doppler image is constructed with use of
the two dimensional FFT. A complete overview of these
processing steps is given in Fig. 1.

3. ENVIRONMENT MODELS

The CFAR detector used in conventional radar systems
is based on binary hypothesis testing under a specific
distribution. If the distribution is homogeneous across
the entire range, a fixed-threshold CFAR detector can
be utilized. However, when the distribution of the
signal processing output for the null hypothesis is range-
dependent, a CFAR detector with a fixed detection
threshold is bound to under-perform.

To evaluate the performance of the proposed deep-
learning-based radar detector against a conventional
CFAR solution to this problem (i.e. cell-averaging
CFAR), we simulate three scenarios that deviate from
the homogeneous distribution assumption. The first sce-
nario involves detection of multiple targets. In this case,
the energy from each target leaks to adjacent range and
Doppler resolution cells, which are termed sidelobes of

a target. As a result, a target with large radar cross
section (RCS) may shadow another target with smaller
RCS. Moreover, the tatistics of the neighboring resolu-
tion cells will be altered, which may in turn give rise
to increased false alarm rate or reduced probability of
detection.

The second scenario concerns the presence of an in-
terfering signal. When the interfering signal is from an-
other FMCW radar that operates in the same frequency
band, ’ghost targets’ will appear on the range-Doppler
output of the victim radar [14]. This effect cannot be
accounted for by standard CFAR detectors, but has to
be dealt with by tracking algorithms over several mea-
surements. To account for other interference effects that
can be modelled as stochastic processes, it is assumed
that an interfering source produces an effect that appears
as noise confined between certain range intervals. The
increased noise causes edges inside the Doppler image
and can conceal target returns, respectively resulting in
higher probabilities of false alarm and lower probabilities
of detection.

The third scenario is detection of targets in non-
homogeneous clutter environment. Clutter is defined as
the accumulation of all unwanted echoes that do not orig-
inate from a target. Targets of interest are often differ-
entiated from clutter according to their velocity: Clutter
is assumed to have zero velocity while targets of interest
are assumed moving. Pulse Doppler radars measure the
velocity of each target from the Doppler effect described
in (2). The clutter model implemented in the simula-
tor consists of placing a contiguous clutter area between
certain ranges to generate the non-homogeneous environ-
ment. Internal clutter motion is modeled as fluctuations
in the clutter RCS from one FMCW pulse to the next
[15]. Such internal clutter motion gives rise to a Doppler
spectrum which not only has the DC component associ-
ated with the stationary reflectors, but also components
at higher Doppler frequencies. Models as well as exper-
imental results from previous literature are used as a
ground rule for recreating the spectral shape of the most
common clutter types [16] [17] [18].

4. CELL AVERAGING CFAR DETECTOR

In order to detect targets, cell averaging CFAR detectors
use a local threshold, determined by the noise statistics.
Each cell under test (CUT) is evaluated and compared
with the threshold T to determine whether a target is
located in the range bin of the CUT. The threshold is
derived from the noise power Pn = 1

N

∑N
i=1(TC)i, where

TC is a training or reference cell and N the number of
these cells. Noise statistics are solely derived from the
surrounding training cells. In order to satisfy a constant
probability of false alarm Pfa, a constant scale factor α



is multiplied with the estimated noise power [1] resulting
in the threshold value T = αPn.

The reference cells are not located directly adjacent
to the CUT. Instead some guard cells (GC) are inserted.
Guard cells are included to prevent target returns from
leaking into training cells and adversely effecting the
noise power estimate.

5. DEEP LEARNING BASED DETECTORS

Two different deep learning structures are discussed;
a regular feed forward CNN and an unfolded iterative
method. Both networks are trained under supervised
learning with simulated radar images containing mul-
tiple targets in a cluttered environment. The detector
outputs are subsequently processed by a centroid local-
ization algorithm to obtain high-resolution localizations.

5.1. Convolutional network

The regular CNN consists of four hidden layers, each
yielding 32 new feature-map representations through a
set of 3×3 convolutional kernels, followed by ReLU acti-
vations. A final layer then maps these 32 feature maps to
a single output for every pixel/cell, indicating the prob-
ability of a target being present in such a cell. In total,
the network has 28, 097 trainable parameters.

5.2. Deep unfolded ISTA

Deep unfolding methods leverage signal models to dic-
tate an appropriate neural network architecture, and
have been introduced in applications spanning from
image denoising, to super-resolution imaging and clut-
ter suppression [19][20]. We here adopt the following
approximate signal model:

x = Az + n, (3)

where x, z, and n are the vectorized range-Doppler
measurements, underlying targets, and residual noise
sources, respectively. A is a matrix that maps the
target locations (encoded on a grid) to range-Doppler
measurements. Assuming that the targets are sparsely
distributed across the range-Doppler cells, Equation (3)
can be solved for z through sparse coding, e.g. by the
iterative shrinkage and thresholding algorithm (ISTA):

zk+1 =Tλ
(
zk − µAT

(
Azk − x

))
, (4)

where µ determines the step size, and Tλ(z)i = (|xi| −
λ)+sgn(zi) is the proximal operator of the `1 norm.
Equation (4) is compactly written as:

zk+1 =Tλ
(
W1x + W2zk

)
, (5)

with W1 = µAT , and W2 = I − µATA. This recur-
rent structure is then unfolded into a K-layer feedfor-
ward neural network, with each layer consisting of train-
able convolutions Wk

1 and Wk
2 , along with a trainable

shrinkage parameter λk. We here adopt a 10-layer net-
work, i.e. K = 10. Notably, the resulting network only
has 986 trainable parameters.

5.3. Training strategy

We train the networks through the following loss function
L(X,Y|θ) is defined as [21]:

L(X,Y|θ) = ||g(σ) ∗Y− fθ(X)||22 + λ||fθ(X)||1 (6)

where g(σ) is a Gaussian kernel with standard deviation
σ, Y the binary target map, and fθ(X) the predictions
of a network parameterized by θ. The first term of (6)
pushes the network predictions close to the smoothed
targets, while the second promotes sparsity of predictions
through an `1 norm with weight λ. During training we
use an annealing scheme for σ, starting with a relatively
high value (σ = 10), and reducing it every epoch until
reaching a set minimum value (σ = 0.2). In practice,
this annealing approach led to more stable training.

6. DATA SETS AND METRICS

The performance of the radar detectors is evaluated on
four datasets, all composed of full-size range-Doppler im-
ages with corresponding labels (binary images) contain-
ing the targets positions. The images are constructed
by means of the FMCW signal processing and environ-
ment model, previously described in Sections 2 and 3.
The first dataset comprises images with single-target re-
turns. This data set is used as a reference, since it is ex-
pected the detectors have no problem detecting the tar-
gets when the images are free of unwanted echoes. The
second dataset contains range-Doppler images with mul-
tiple targets that have a high probability of being closely
spaced. The third dataset contains clutter in addition
to multiple targets. The last dataset includes multiple
targets as well as interference.

We use three metrics to evaluate the detector per-
formance on these datasets, recall, precision, and error,
which we define as follows. The recall represents the per-
centage of correctly identified targets, with a target re-
garded as correctly identified whenever it is found within
the vicinity (radius = 6 px) of the actual target. The pre-
cision then covers the amount of false alarms, and lastly,
the distance from each prediction to the closest label is
calculated (localization error).



Table 1. Quantitative results of the implemented detectors.
Detector CA CFAR Standard CNN Deep unfolded ISTA
Data set Error(µ± σ) Recall Precis. Error(µ± σ) Recall Precis. Error(µ± σ) Recall Precis.
single 0.30 ± 0.20 0.98 0.89 0.35 ± 0.24 1.00 1.00 0.35 ± 0.24 1.00 1.00
multiple 0.94 ± 2.14 0.82 0.98 0.41 ± 0.31 1.00 1.00 0.38 ± 0.37 0.99 1.00
interfer. 1.03 ± 2.47 0.71 0.79 0.42 ± 0.43 0.98 1.00 0.42 ± 0.43 0.99 0.99
clutter 1.12 ± 3.20 0.74 0.31 0.50 ± 0.72 0.97 0.82 0.46 ± 0.56 0.98 0.93

7. RESULTS

Table 1 shows quantitative results of the detectors. As
expected, all three detectors perform well for the local-
ization of single targets in a homogeneous environment.
When evaluating all detectors with the multiple-target
dataset we observe that CA CFAR is not able to recog-
nize all of the closely spaced targets. Indeed, the weaker
reflection of the adjacent target is often masked by the
side lobes of the stronger target, raising the threshold T
and resulting in a missed detection. In contrast, both
deep learning implementations do not suffer from this,
only leading to a slight increase in localization error.
In the event of interference, a more significant differ-
ence in performance is observed between detectors. The
CA CFAR detector seems to perform worse especially in
cases where the targets are located on the edge of inter-
ference, of which and example is depicted in Fig. 2. Both
deep learning detectors again perform similarly well in
this scenario. From Table 1 we observe that clutter has
the strongest impact on detection performance. Notably,
the deep unfolded ISTA network outperforms both other
methods in this case.

A 2D range-Doppler image containing both interfer-
ence and clutter is shown in Fig. 3, along with the corre-
sponding detections by CA CFAR and the deep learning
methods. The former is only able to detect half of the
targets and is again outperformed by the CNN and un-
folded ISTA network.

8. CONCLUSIONS

In this paper we proposed two radar detectors based
on deep learning. We showed that these detectors are
able to localize targets across challenging conditions
and environments (containing clutter, interference and
closely spaced targets), thereby outperforming the con-
ventional cell-averaging CFAR detector. In addition,
we demonstrated that a compact (< 1000 parameters)
model-based deep unfolded network is up to par with a
more complex convolutional network, and even outper-
forms it for the most challenging range-Doppler spectra
containing strong clutter. Although the results presented
in this work show promise, validation on real radar data
is needed, and will be part of future work.
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Fig. 2. Signal with interference and a target located near
the edge. The CA CFAR detector misses the target due
to the presence of the interference. The deep learning
methods are able to locate the target correctly.
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Fig. 3. Visual comparison of the performance of the
radar detectors when subjected to clutter (left), interfer-
ence (right) and multiple targets (1-10).



9. REFERENCES

[1] Prashant P Gandhi and Saleem A Kassam, “Anal-
ysis of cfar processors in nonhomogeneous back-
ground,” IEEE Transactions on Aerospace and
Electronic systems, vol. 24, no. 4, pp. 427–445, 1988.

[2] Prashant P Gandhi and Viswanath Ramamurti,
“Neural networks for signal detection in non-
gaussian noise,” IEEE Transactions on signal pro-
cessing, vol. 45, no. 11, pp. 2846–2851, 1997.

[3] Simon Haykin and Tarun Kumar Bhattacharya,
“Modular learning strategy for signal detection in a
nonstationary environment,” in MILCOM 97 MIL-
COM 97 Proceedings. IEEE, 1997, vol. 3, pp. 1113–
1116.

[4] Michael W Roth, “Neural networks for extraction of
weak targets in high clutter environments,” IEEE
Transactions on Systems, Man, and Cybernetics,
vol. 19, no. 5, pp. 1210–1217, 1989.

[5] Farid Amoozegar and Malur K Sundareshan, “A ro-
bust neural network scheme for constant false alarm
rate processing for target detection in clutter envi-
ronment,” in Proceedings of 1994 American Control
Conference. IEEE, 1994, vol. 2, pp. 1727–1728.

[6] Diego Andina and José L Sanz-González, “Appli-
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