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Deep generative models have been studied and
developed primarily in the context of natural
images and computer vision. This has spurred the
development of (Bayesian) methods that use these
generative models for inverse problems in image
restoration, such as denoising, inpainting, and super-
resolution. In recent years, generative modeling
for Bayesian inference on sensory data has also
gained traction. Nevertheless, the direct application
of generative modeling techniques initially designed
for natural images on raw sensory data is not
straightforward, requiring solutions that deal with
high dynamic range signals acquired from multiple
sensors or arrays of sensors that interfere with
each other, and that typically acquire data at a
very high rate. Moreover, the exact physical data-
generating process is often complex or unknown.
As a consequence, approximate models are used,
resulting in discrepancies between model predictions
and the observations that are non-Gaussian, in turn
complicating the Bayesian inverse problem. Finally,
sensor data is often used in real-time processing
or decision-making systems, imposing stringent
requirements on, e.g., latency and throughput. In this
paper, we will discuss some of these challenges and
offer approaches to address them, all in the context of
high-rate real-time sensing applications in automotive
radar and medical imaging.
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1. Introduction
Active array sensing techniques are at the core of numerous advanced technologies, playing a
critical role in fields such as automotive radar and medical imaging. These sensor arrays consist of
multiple individual elements that actively emit signals and capture the reflected waves (sound or
light) to obtain accurate representations of the scenery. The culmination of many sensory signals
leads to massive data rates and corresponding challenges [1–3]. These systems are required to
provide high-resolution and real-time imaging, all while dealing with interference, noise and a
changing environment.

Many of the challenges faced in array sensing can be effectively reformulated as inverse
problems, which seek to estimate unknown parameters from observations. In the context of array
sensing, this typically means reconstructing images or (distance, velocity or angular) measures
from the raw data captured by the sensors. However, due to the underdetermined nature of
these inverse problems, strong priors and knowledge of the underlying processes at hand are key
for reliable reconstructions. This necessitates advanced modeling techniques that extract and
capture meaningful information from the raw sensory data.

Recent advances in Deep Generative Models (DGMs) have shown great potential in solving
problems with high-dimensional data by learning and exploiting the data manifold in domains
ranging from medical imaging [4], computer vision [5] and natural language processing [6].
Specifically, they seek to model the distribution of data and subsequently sample from it,
which can serve as a signal prior and aid in the inverse problem solving. However, applying
these techniques directly to raw sensory data presents additional challenges due to the high
dynamic range (HDR) and rapid data acquisition rates, which impose stringent requirements on
latency and throughput, further complicating the use of DGMs. Consequently, these challenges
necessitate the development of tailored techniques involving generative models that effectively
manage the unique characteristics of sensory data while adhering to the requirements of high-rate
real-time sensing applications.

In this paper, we review ongoing work in application of deep generative models to sensory
data. We start with some background on sensing applications, DGMs and finally Bayesian
inference with DGMs in Section 2. Then, we discuss the two main challenges, namely model
mismatches and real-time inference in Sections 3 and 4, respectively. In both of these sections,
we discuss methods that mitigate these challenges, ranging from improved forward models with
the use of DGMs, to accelerated inference techniques through approaches such as deep unfolding,
temporal inference and active compressed sensing.

2. Background
(a) Sensing applications
Many sensor modalities, such as medical imaging and radar sensing, share a common objective,
namely the measurement of an unknown channel impulse response. These channels are often
deeply complex, with signals exhibiting significant dynamic range variations in combination
with high sample rates. These characteristics of sensory data challenge accurate signal recovery.
For instance, in both ultrasound imaging and radar, the generative model of the sensory data
is not exactly known due to the highly variable reflectivity of objects within the sensor’s line of
sight and the presence of multipath propagation. Extracting a signal-of-interest from raw data is
a challenging task for existing model-based techniques, e.g., due to the lack of modeling capacity,
non-Gaussian (structured) noise or other undesirable sensing phenomena such as interference
or aberration. Another challenge faced when dealing with sensory data are high data rates, for
example in real-time imaging applications. Compressed Sensing (CS) [7–10] has emerged as a
powerful technique for reducing data rates by compressing the size of measurement vector y
necessary to recover the signal-of-interest x, through intelligent design of the sensing matrix
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A and exploitation of known signal statistics. A common application of CS is via subsampling,
which aims to recover the full signal-of-interest from a subset of possible measurements, typically
fewer than required by the Nyquist-Shannon theorem. This has been successfully applied to
reducing data rates in many domains, such as ultrasound imaging [11–13], radar [14,15], and
Magnetic Resonance Imaging (MRI) [16].

Throughout this work, we refer to the following forward model:

y = Ax + n + ϵ , x ∈ RM , {y, n, ϵ} ∈ RN , A ∈ RN×M (2.1)

where the observations y are contaminated with structured noise n and thermal noise ϵ,
respectively. The thermal noise is assumed to be AWGN, i.e., ϵ ∼ N (0, σ2

ϵ I) where σ2
ϵ represents

its variance. In contrast, structured noise encapsulates all model errors (mismatch), including
possibly non-linear effects, distortions and multipath components in the observations y. The
nature of n depends on the sensing scenario. In some applications, n may be independent of
x, such as structured interference from externals sources, commonly encountered in automotive
applications of radar. However, in other scenarios, such as diffraction or multipath scattering
in ultrasound imaging, n is inherently a function of x, e.g. n(x). Explicitly modeling (and
performing inference on) the true forward physics model of n is often challenging. Given the
complexity of capturing potential dependencies between n and x, we assume independence, i.e.,
p(n|x) ≈ p(n) and instead learn the marginal distribution p(n) in a fully data-driven fashion, as
discussed in Section 3.

For our goal of inferring the underlying signal-of-interest x from observations y, we make use
of the forward model in (2.1) combined with statistical priors. To establish these priors, we resort
to Deep Learning (DL) which has been proven to be effective for tasks that require accurate
statistical models learned from the data itself. While black box approaches often fail when the
trained networks are subjected to out-of-distribution data [17], recently, Deep Generative Models
(DGMs) have shown exceptional capabilities when used in conjunction with Bayesian theory.
By conditioning the generative process on observations, DGMs provide a robust framework for
solving inverse problems, such as signal recovery in the presence of structured noise.

In the following, we provide a brief introduction to DGMs and their role in posterior sampling.
We then highlight their growing use in various sensing applications, demonstrating their potential
to enhance the accuracy and robustness of signal recovery in these challenging environments.

(b) Deep generative models
Generative models try to understand and model the underlying distribution of data and have an
effective way of sampling new data points from this distribution. DGMs are a class of generative
models that have specifically gained traction due to their ability to model high-dimensional
data. At the core of DGMs are general parameterized function approximators, usually neural
networks. These networks are trained on many examples from a training dataset, representing
the data distribution. DGMs are able to effectively capture the structure of the data manifold
as they leverage the property that all data points lie on a lower-dimensional manifold embedded
in the high-dimensional data space [18].

Nonetheless, modeling distributions with DGMs poses several challenges. Probability density
functions are constrained to be non-negative and integrate to one, which limits the choice
of neural architectures. Variational Autoencoders (VAEs) [19] circumvent the intractability of
density estimation by approximating it with a variational lower bound. Generative Adversarial
Networks (GANs) [20] are another class of DGMs that learn the data distribution implicitly
through an adversarial objective. Normalizing Flows (NFs) [21] take a different approach
altogether by transforming a simple base distribution into the target distribution through a
series of invertible transformations.

Here, we focus on a more recent development in the field of DGMs, namely Diffusion Models
(DMs). These models indirectly model the underlying distribution pdata(x) through the score
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function ∇x log pdata(x), which is the gradient of the probability density function with respect to
the data itself. Unlike likelihood-based methods, this circumvents the need of directly modeling
the probability density function. Furthermore, it leads to an interpretable denoising score-
matching objective, which allows us to parameterize the score function with any neural network
sθ(x) and train it as follows:

arg min
θ

Epdata(x)
[
∥sθ(x) − ∇x log pdata(x)∥2

2
]
. (2.2)

This effectively results in a function that points back towards the data manifold and can be
used to sample from the data distribution pdata. DMs model this sampling procedure through
the reversal of a corruption process, also known as forward diffusion, which progressively adds
increasing levels of additive white Gaussian noise (AWGN) until the sample is completely
transformed from the original data distribution x0 ≡ x ∼ pdata to a Gaussian noise sample
xT ∼ N (0, I), with diffusion time τ ∈ [0, T ]. This continuous forward process x0 → xτ → xT
can be formalized using a Stochastic Differential Equation (SDE):

dx = f(τ)x + g(τ)dw, (2.3)

where w ∈ Rd is a standard Wiener process, f(τ) : [0, T ] → R and g(τ) : [0, T ] → R are the drift
and diffusion coefficients, which contribute to the deterministic and stochastic aspects of the
SDE, respectively. Naturally, we are interested in the reversal of this process, which leads to the
reverse diffusion process which has shown to result in a reverse-time SDE as follows [22]:

dx =
[
f(τ)x − g(τ)2 ∇xτ log p(xτ )︸ ︷︷ ︸

score

]
dτ + g(τ)dw̄τ , (2.4)

where dτ and dw̄ are now processes running backwards in diffusion time. Conveniently, the
score function emerges from this reverse diffusion process and can accordingly be substituted
with the learned score model from (2.2) to gradually remove noise and sample from pdata.
Moreover, to facilitate the training process, the score model is conditioned on the diffusion time
step τ , resulting in a Noise Conditional Score Network (NCSN) sθ(xτ , τ) which is able to jointly
evaluate the score of all perturbed data distributions ∀τ ∈ [0, T ] [23].

(c) Posterior sampling
To reconstruct corrupted or incomplete incoming sensory data, according to (2.1), using
generative models, we resort to a probabilistic framework with deep generative models serving
as foundation for inferring the underlying data. The act of posterior sampling centers around
the idea of incorporating both prior information p(x) with incoming observations y according
to Bayes’ rule. Many posterior sampling algorithms have been proposed for various generative
modeling architectures, for example the conditional Wasserstein GAN [24]. Here, however, we
focus on posterior sampling with DMs in order to provide the necessary background for the
methods to follow.

As DMs generate samples using gradients of probability density functions, we start by using
Bayes’ rule to formulate the posterior score function:

∇xτ log p(xτ | y)︸ ︷︷ ︸
posterior

= ∇xτ log p(xτ )︸ ︷︷ ︸
prior

+ ∇xτ log p(y | xτ )︸ ︷︷ ︸
likelihood

. (2.5)

This expression factorizes the posterior distribution into a prior distribution which we model
with DGMs and a likelihood term, which is a known distribution given our understanding of the
physical acquisition process of the observed sensory data y, capturing how the true signal x is
corrupted by factors such as sensor noise, distortions and resolution limits. In order to achieve
posterior sampling with pre-trained DMs, one can substitute the score function in (2.4) with
the factorization of (2.5) leading to a conditional reverse-time diffusion process. The posterior
score is then approximated as ∇xτ log p(xτ |y) ≈ sθ(xτ , τ) + ∇xτ log p(y|xτ ).
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Unfortunately, the structured noise-perturbed likelihood p(y|xτ ) is intractable, in contrast
to the noiseless case p(y|x0). Various posterior sampling methods for DMs have been proposed
to estimate this quantity [25–27]. A widely used approach is Diffusion Posterior Sampling
(DPS) [28], which leverages the posterior mean that is derived via first order Tweedie’s [29]:

p(x0|xτ ) ≈ E[x0|xτ ] = 1
ατ

(
xτ + σ2

τ ∇xτ log p(xτ )
)

(2.6)

≈ 1
ατ

(
xτ + σ2

τ sθ (xτ , τ)
)

:= x0|τ , (2.7)

where x0|τ represents the one-step denoising from diffusion step τ . The first approximation
corresponds to the Minimum Mean Squared Error (MMSE) estimator for p(x0|xτ ) [30], while
the second substitutes the score function with the trained NCSN. Further, we reparameterize
the SDE in (2.3) using signal and noise rates, ατ and στ , which can be derived from the noise
scheduling f(τ), g(τ) [22], as xτ = ατ x0 + στ z with z ∼ N (0, I). Finally, we approximate a
tractable posterior score, by starting from (2.5) and substituting the approximate gradient of
the log likelihood using (2.7) as follows:

∇xτ log p(xτ |y) = ∇xτ log p(xτ ) + ∇xτ log p(y | xτ ) (2.8)

≈ sθ(xτ , τ) + ∇xτ log p
(
y | x0|τ

)
. (2.9)

The exact implementation of this posterior sampling framework varies based on the specific
application. To illustrate this, we will provide examples from ultrasound, radar, and MRI in the
following sections.

3. Model mismatch
Model mismatch is a critical challenge in inverse problems involving real-world sensory data,
where the assumed forward model deviates from the actual, often more complex, data acquisition
process. While we often assume a known and accurate forward process p(y | x) as described in
(2.1), this assumption rarely holds in practice.

DGMs have demonstrated strong performance in inverse problems when the forward model
is fully known. However, in sensory data, the acquisition process often involves unknown
propagation effects such as multi-path scattering, or sensor-specific distortions. Factors that
are difficult to capture directly with a simple forward model or to learn directly from data using
DGMs.

To close this gap, we discuss several key approaches. Firstly, in Section 3(a), we examine the
concept of structured noise, where model errors are explicitly captured with a DGM, relaxing the
reliance on a perfectly known forward model. Secondly, in Section 3(b), we address the challenge
posed by the high dynamic range (HDR) of raw sensory data, which can complicate the training
and application of generative models. Finally, in Section 3(c), we incorporate model-based score
functions that leverage prior knowledge about the signal or sensing physics, enabling more robust
guidance during inference. Throughout this section, the practical application of these concepts
will be illustrated through two detailed examples in the domains of ultrasound imaging and
automotive radar.

(a) Structured noise
One approach to dealing with model mismatch and other sensing and imaging artifacts is to
model these error terms as structured noise. Logically, the structured noise cannot be captured
using parametric probability distributions (such as Gaussian). Therefore, we resort to DGMs
to learn its structure from data. This approach can effectively mitigate model mismatch in
ultrasound and radar applications as we show in the following section.

For radar interference mitigation and multipath dehazing, similar source separation
techniques have been applied through the use of joint posterior sampling using DGMs [31,32].
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Figure 1: Overview of the proposed joint posterior sampling method for removing structured
noise using DMs. During the sampling process, the solutions for both signal and structured noise
move toward their respective data manifold M through the score functions. At the same time,
the data consistency term derived from the joint likelihood p(y|xτ , nτ ) ensures solutions that
are in line with the (structured) noisy measurements. Figure adopted from [33].

The ill-posed problems are tackled by introducing two parallel generative processes that are
conditioned on y to create a joint posterior sampling process using DMs [33]. Using Bayes’ rule,
samples are drawn from the joint posterior distribution p(x, n|y) to obtain estimates of both
signal and structured noise components, x and n:

(x, n) ∼ p(x, n|y) ∝ p(y|x, n) · p(x) · p(n) , (3.1)

where p(y|x, n) is the likelihood according to our measurement model in (2.1) and p(x) and
p(n) are prior distributions which can be modeled using score-based DMs with the objective
in (2.2). The parallel posterior sampling (for both signal and structured noise components) is
achieved by extension of (2.4), through substitution of the score with the score of the joint
posterior distribution. This results in the coupled diffusion process described by the following
reverse-time SDE:

d(xτ , nτ ) =
[

f(τ)(xτ , nτ ) − g(τ)2∇xτ ,nτ log p(xτ , nτ |y)
]

dt + g(t)w̄t . (3.2)

We can again factorize the joint posterior using Bayes’ rule for scores as follows:

∇xτ log p(xτ , nτ |y) = ∇xτ log p(xτ ) + ∇xτ log p(y|xτ , nτ ), (3.3)

∇nτ log p(xτ , nτ |y) = ∇nτ log p(nτ ) + ∇nτ log p(y|xτ , nτ ). (3.4)

From this factorization it follows that each separate reverse diffusion process (for both signal
and structured noise) is entangled through the shared joint likelihood term log p(y|xτ , nτ ). The
prior score of the signal component ∇xτ log p(xτ ) can be either learned using a DM or have an
analytical prior such as sparsity. The structured noise score ∇nτ log p(nτ ) is additionally learned
using a separate DM due to its complex nature. For a detailed description of the full algorithm
we refer the reader to [33]. In the following sections, we illustrate the practical application of
these techniques addressing model mismatch, focusing on two major problems in the context of
different sensing applications: ultrasound multipath scattering and radar interference.

Example 1: Ultrasound multipath scattering
Throughout this review, we will highlight several applications, demonstrating key techniques
enabling the use of DGMs on sensory data. Each example is introduced with an information
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box, explicitly specifying the forward model and how DGM is applied within the given context.
Moreover, a short overview of data rates and sizes is provided to offer insight into the variability
and characteristics of different types of sensory data.

Box 3.1 – Application: ultrasound imaging

Data characteristics: A typical ultrasound probe comprises hundreds of individual
transducer elements, each of which operates at sampling frequencies at the Nyquist rate,
typically in the range of tens of Megahertz (MHz), leading to N fast-time samples per
receive channel C. Depending on the transmit sequence (focused, diverging wave, plane
wave) several hundreds slow-time sequences are acquired. In regular 2D brightness mode
(B-Mode) imaging, at least several tens of frames per second can be expected, leading to
raw data y ∈ RC×M×N rates that can quickly amount to several hundreds or thousands
Gigabits per second (Gbit/s). This problem is exaggerated in 3D ultrasound, where
matrix probes consist of thousands of elements [34].
Forward model: y is the observed (and hazy) beamformed RF data. x is the clean
beamformed RF data with the same dimensions, but only containing the direct path
contributions. All clutter and multipath components are modeled through structured
noise component n using a separate DGM.
Application of DGMs: As both signal and haze contributions in the beamformed RF
data are highly structured, DGMs can be fitted to both of these components.

The first application we discuss is ultrasound imaging, a widely used modality in medical
diagnostics due to its non-invasive and real-time nature. See Box 3.1 for a general overview of the
application. Through the transmittance of high-frequency sound waves into the body, internal
tissue structures can be reconstructed from the backscattered echoes. However, ultrasound
signals are subject to a range of different noise sources that clutter the image and limit
interpretability. One of the major origins for loss in image quality is caused by multipath
scattering amidst layers of skin, fat and muscle between the transducer and the tissue being
examined. These multipath reflections amount to a haze-like appearance on the image, dubbed
simply haze. Specifically, cardiac ultrasound is sensitive to haze due to the small transducer
footprint and the addition of the ribs in line of sight of the probe. In order to suppress the
multipath clutter n and retrieve the direct path contribution x from the measured ultrasound
signals y we consider the forward model in (2.1) and explicitly model both components separately
with DMs [32,33]. For this purpose, we perform denoising score matching, see (2.2), on (unpaired)
training data samples of clean ultrasound {x1, . . . , xL} ∼ p(x), and multipath haze recordings
{n1, . . . , nL} ∼ p(n) to learn two separate score functions, conditioned on the diffusion time
step τ :

∇xτ log p(xτ ) ≈ sθ(xτ , τ) and ∇nτ log p(nτ ) ≈ sϕ(nτ , τ). (3.5)

Note that paired data of clean and hazy samples is not required to train these two generative
models. This greatly reduces the difficulty of creating suitable datasets, as the structured noise
can be acquired in isolation or simulated. See [32] for more details on the curation of the cardiac
haze dataset. Moreover, learning each distribution with separate DGMs is more robust compared
to a supervised method on paired data. The latter approach struggles with generalization due to
the variability in paired samples and potential to overfit to specific instances of noise [32]. During
inference, the two trained DGMs can be deployed within the joint-posterior sampling framework
as seen in (3.3) and (3.4). The impact of a learned noise prior, compared to a traditional Gaussian
prior on the problem of dehazing medical ultrasound data is illustrated in Fig. 2. The learned
prior yields improved contrast and clearer structural details, whereas the Gaussian prior leaves
residual noise with structured components, suggesting it inadvertently suppresses parts of the
underlying signal.
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Figure 2: Comparison between a structured noise DGM prior and a Gaussian prior for the task
of dehazing in-vivo medical ultrasound data. Posterior estimates of the signal x̂ and noise (haze)
n̂ are shown for each method, alongside corresponding gCNR [35] (↑) values, highlighting the
improved performance of the structured noise prior. Figure adopted from [33].

(b) High dynamic range
Unlike natural images, which typically have a relatively narrow range of pixel intensities, raw
radio-frequency (RF) data in sensor applications often exhibits a high dynamic range (HDR),
meaning that the signal amplitudes can vary drastically, see Fig 3. Besides this imposing
constraints on the hardware side, requiring HDR Analog-to-Digital Converters (ADCs) [36],
this also presents challenges when training generative models such as DMs. The wide range
of intensities can lead to numerical instability, with gradients either exploding or vanishing,
and can cause the network to focus disproportionately on the stronger signals while neglecting
weaker, yet important, components. In [32], the HDR of ultrasound signals is addressed through
transformation of the RF data using a technique known as companding. This is an invertible
operation that can compress and expand the dynamic range of a signal as follows:

compress: C(xRF) = sgn(xRF) ln(1 + µ|xRF|)
ln(1 + µ) , expand: C−1(x) = sgn(x) (1 + µ)|x| − 1

µ
,

(3.6)

with −1 ≤ xRF ≤ 1, −1 ≤ x ≤ 1 and where µ is a parameter that determines the amount of
compression applied. This ultimately leads to the following likelihood score:

∇xτ ,nτ log p(y|xτ , nτ ) ≈ ∇xτ log p(y |E[x0 | xτ ],E[n0 | nτ ]) (3.7)

= ζ∇xτ ,nτ

∥∥y − C(AxRF,0|τ + nRF,0|τ )
∥∥2

2

= ζ∇xτ ,nτ

∥∥y − C(C−1(Ax0|τ ) + C−1(n0|τ ))
∥∥2

2 , (3.8)

which can be used in combination with the two priors in (3.5) modeled with diffusion networks
sθ(xτ , τ) and sϕ(nτ , τ) to perform joint posterior sampling according to the framework in (3.2).
Note that we use Tweedie’s formula from (2.7) to approximate (3.7) and introduce ζ to group
the constants as a result of the derivation of the data consistency term (3.8). These exact steps,
including the companding technique, were used to generate the dehazed ultrasound images
shown in Fig. 2.

Example 2: Radar interference
As a second case study, we consider the growing problem of mutual interference in automotive
radar, a domain where model mismatch arises from unpredictable signal interactions in
increasingly congested environments. Mutual interference is becoming a major challenge in the
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Figure 3: (Left) RF signals and their companded versions, where the µ value is adjusted to
align the distribution with that of typical image pixel intensities. (Right) Histogram comparison
of RF, companded RF, and ultrasound image data, illustrating the HDR nature of RF signals.
Naturally, the companded RF data exhibits a distribution more closely resembling that of image-
domain data, facilitating more stable and effective training of DGMs. Figure taken from [32].

automotive radar scene as more vehicles are being equipped with radar sensors, resulting in
resource scarcity, i.e., time, frequency, and space [37]. Although the de-facto waveform currently
implemented by the sensor manufacturers is Frequency-Modulated Continuous Wave (FMCW),
whose chirp-like signals linearly increase or decrease its carrier frequency over time, there
is currently no standardization present, leading to a free-for-all situation. A broad range of
transmission schemes have been developed and implemented over time, i.e., up-down chirps,
stepped-frequency, and frequency-coded waveforms [38,39], resulting in a large variety of radar
signals that can interfere with a victim radar. For more information see Box 3.2. This diversity
burdens interference removal, causing simple existing mitigation strategies to become less
effective. Model-based solutions [40], supervised neural networks [41–44], and model-based
deep learning methods [45,46] have been proposed for interference removal. DGMs can learn
a large variety of waveforms from training data to effectively remove interference signals; one
implementation using posterior sampling is elaborated on below.

Generally, radar-to-radar interference mitigation occurs on the raw data directly, i.e., fast-
time data, prior to any post-processing to avoid the interference from leaking into the other
dimensions. Therefore, radar interference can be seen as structured noise, n in (2.1), and leads
to model mismatch with the interference being uncorrelated or correlated, ultimately reducing
the radar’s sensitivity or creating false positive detections. The authors in [31] have used DGMs
by applying score-based diffusion for solving (3.3) and (3.4) to separate the target reflections x
and interference signals n from the observation y.

(c) Model-based score function
In contrast to Section 3(a), where two score functions are approximated using deep neural
networks (see (3.5)), specific signal properties, e.g. sparsity, can be inferred using model-based
priors throughout the diffusion process to reduce complexity. As radar signals are known to
be sparse in the range, Doppler and angular domain, the authors of [31] exploit this domain
knowledge in a model-based prior. Instead of having a deep neural network for approximating
the score, ∇xτ log p(xτ ) ≈ sθ(xτ , τ), as defined in (3.5), an analytical model-based score function
is calculated by rewriting (2.7) using Tweedie’s approach. Then, the score function for the target
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Box 3.2 – Application: radar

Data characteristics: Every radar is required, as defined in ISO standards, to send
updates to the car of the objects present in the sensing environment (typically every
40–100 ms, which includes the sensing time and the processing time of all downstream
tasks). Therefore, real-time constraints are put on signal processing and deep learning
solutions, such as interference mitigation, direction of arrival estimation, etc. Data rates
in automotive radar can range from hundreds of Gbit/s to tens of Gbit/s, where a
typical 3-D fast-time data cube y ∈ RC×M×N comprises C receive channels, M slow-time
samples, and N fast-time samples, respectively. With the recent trend towards high-
resolution automotive radars, data cubes can for example grow towards 32 × 256 × 1024,
putting more stringent requirements on data rates, memory and computational load in
the post-processing stages.
Forward model: y is the observed interfered signal, x is the complex-valued sparse
signal containing the range information to all object reflections, and n and ϵ are the
interference-only signal and thermal noise, respectively, in the same domain as y.
Therefore, we consider the following forward model: y = FHx + n + ϵ, where we are
interested in separating x and n from y using a DGM.
Application of DGMs: To mitigate interference, we use a model-based and data-
driven score-based DGM to obtain estimates of x and n, respectively. It is applied using
only N fast-time samples, for all C channels and M slow-time samples independently.

signals at time step τ can be analytically defined as

∇xτ log p(xτ ) = 1
σ2

τ

(
ατ x0|τ − xτ

)
, (3.9)

where x0|τ denotes the posterior mean, which the authors opt to obtain using the following
ℓ1-norm minimization by promoting sparsity in x:

x0|τ : = arg min
x

1
2σ2

τ
||xτ − x||22 + λτ ||x||1 (3.10)

= proxλτ ||·||1 (xτ ) = xτ

|xτ | (|xτ | − λτ )+ . (3.11)

Formally speaking, this is known as a denoising step that is readily implemented using soft
thresholding as shown in (3.11) with λτ being time step-dependent. Additional benefits are that
complex-valued score functions are avoided, which are generally hard to implement.

Furthermore, the authors have opted for a data-driven approach for approximating the
interference score function sϕ(nτ , τ) ≈ ∇nτ log p(nτ ), for which the network has been trained
using the denoising score-matching objective of (2.2). As explained earlier, the structured noise
of the interference signals is challenging to analytically model due to its large waveform diversity,
hence the use of conditional DGMs is favorable due to its generative ability. The distribution of
the interference signals is learned in the raw data format directly.

Under the guidance of the likelihood scores, using DPS, estimates of the targets and
interference signals x̂ and n̂ are obtained using the joint posterior scores (3.3) and (3.4),
respectively:

∇xτ ,nτ log p(y|xτ , nτ ) ≈ ζ∇xτ ,nτ

∥∥∥y − FHx0|τ − n0|τ

∥∥∥2

2
. (3.12)

In Fig. 4 the interference mitigation capabilities are shown for DGMs in a single target scenario
for which a large part of the raw data is recovered from interference as shown in 4a, resulting
in a reduced interference-induced noise-floor in Fig. 4b. Next, we explain how the methods of
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Examples 1 and 2 can be accelerated to enable the application of DGMs for real-time ultrasound
probing and radar sensing.
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Figure 4: A semi-correlated interference scenario where a large portion of the raw data is
contaminated, for which the capabilities of DGMs are shown. Figure taken from [31].

4. Real-time and high-data rates
Besides complex noise sources that cause model mismatches and impede image quality, excessive
data rates and real-time conditions in sensor systems are another stringent requirement that
incentivize efficient sensing and inference algorithms. Nevertheless, while extremely effective,
DGMs are not generally known for their inference speed. In this section we discuss methods
that either address this issue through development of accelerated methods that leverage DGMs
in some way (Section 4(a)), or try to reduce data rates through active compressed sensing
(Section 4(b)).

(a) Acceleration
To bridge the gap between real-time inference of DGMs and high data-rates of sensing
applications, our initial focus will be on acceleration of current methods. In order to maximize
throughput in applications with high data-rates, efficient inference using DGMs is essential.
Specifically, we will discuss temporal inference (Section 4(a)-i), deep unfolding (Section 4(a)-ii),
and knowledge distillation (Section 4(a)-iii).

(i) Temporal inference
The sequential and real-time nature of sensory applications can be both a blessing and curse.
While indeed the high throughput of data requires low-latency inference, the temporal axis can
be exploited to accelerate inference and even improve reconstruction of the raw sensory signals.
One way to accelerate posterior sampling methods using DMs as discussed in Section 2(c), is
to initialize a given diffusion trajectory conditioned on previous frames, effectively reducing
the number of diffusion iterations necessary [47]. Formally, given a set of K diffusion posterior
samples of previous frames xt−K:t

0 =
{

xt
0, xt−1

0 , ..., xt−K
0

}
we would like to estimate p(xt+1 |

xt−K:t
0 ) with some transition model (such as a Convolutional LSTM (ConvLSTM) or Video

Vision Transformer (ViViT)) such that the number of diffusion steps necessary is minimized with
τ ′ ≪ T . Rather than starting each diffusion trajectory from scratch at τ = T with a Gaussian
sample xT ∼ N (0, σ2

T I), we use an appropriate estimate x̃ based on past observations which we
diffuse forward up to τ = τ ′ which leads to initialization of a shortened diffusion trajectory: xτ ′ ∼
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Figure 5: Illustrative example of an active compressed sensing step for MRI acceleration. The
sensing matrix A = UF consists of a subsampling matrix U and DFT matrix F. See fastMRI [1]
for more information about MRI acceleration.

N (ατ ′ x̃, σ2
τ ′ I). As shown in [47], this reduces inference times for cardiac ultrasound imaging

using DMs by 25×. Although in this case x represents B-mode images, applying sequential
posterior sampling to raw sensory data could offer even greater advantages, which we consider
an intriguing direction for future work.

(ii) Deep unfolding
Deep unfolding (or deep unrolling) is a method that utilizes iterative model-based algorithms,
such as proximal-gradient methods, in combination with neural networks to solve inverse
problems. By unrolling the iterative optimization algorithm as a feed forward network it takes the
structure of the iterations and allows for learning the parameters of the algorithm in successive
steps. This will essentially apply multiple iterations in a single forward pass, thus accelerating
the iterative algorithm at the cost of higher memory usage. Deep unfolding has been used in
many real-world inverse problems such as sparse-coding [48], sub-Nyquist sampling [49] and
medical imaging [50] but typically rely on discriminative networks. While there are prior works
that combine deep unfolding with generative models [51,52], there are none for high-data rate
sensing applications, which could be a fruitful avenue to explore.

(iii) Knowledge distillation
Another powerful method to decrease inference time for efficient inference of DGMs is knowledge
distillation, in which a new student model is trained to produce the same outputs as the original
generative model using orders of magnitude fewer parameters. Knowledge distillation has been
successfully applied to accelerate inference with both GANs [53] and DMs [54], among other
architectures.

(b) Active compressed sensing
While DGMs have shown to produce excellent solutions to highly ill-posed CS problems in
many domains, e.g., medical imaging [55,56], we focus here on active CS using generative models.
Active CS [57] aims to sequentially design the sensing matrix A in real-time as the measurements
are acquired, further compressing the required measurement vector and therefore of particular
interest in applications with high data rates. Active CS algorithms are considered ‘active’ in
the sense that they iteratively choose which measurements yt to acquire next based on the
measurements y0:t−1 they have observed so far. In the case of subsampling, for example, this
involves choosing which measurement locations, e.g. pixels, time instances, antennas or other
degrees-of-freedom, to sample in order to optimally reconstruct x. Active CS has a long history in
various sensory applications, with existing works commonly using supervised deep learning [58]
and reinforcement learning [59,60] to choose sampling locations. In the following, we review a
number of recently proposed approaches to active compressed sensing using DGMs to jointly
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guide sampling and reconstruct target signals. In each case, the goal is to minimize uncertainty
about x, as measured by some uncertainty estimate derived from a set of posterior samples
p(x | y0:t−1) generated by the DGM. A challenging aspect in this paradigm is estimating the
decrease in uncertainty that will result from choosing a particular sensing design, leading to a
variety of distributional and parametric assumptions in the methods discussed.

Sanchez et al. [61] propose Generative Adaptive Sampling (GAS), a method for active
subsampling in which the regions of the measurement signal with highest predicted variance are
sampled next. This variance is computed by generating posterior samples of the full target signal
x ∼ p(x | y0:t−1) and passing them through the measurement model yt = Ax to generate samples
of the full measurement signal at time t, yielding yt ∼ p(yt | y0:t−1). The sample variance of this
distribution over measurements V[Ax | y0:t−1] can thus be computed directly from the posterior
samples x. The pixel or set of pixels maximizing this variance is then sampled at time t, and
the algorithm repeats. Note that because the measurement noise is independent of the sampling
location, choosing to sample the measurement location with the highest entropy will result in
minimizing uncertainty about x [62]. Variance is however only proportional to the entropy under
certain distributional assumptions, e.g. isotropic Gaussian. Despite this assumption, GAS proves
to significantly outperform variable-density sampling in reconstructing MNIST images using a
Wasserstein GAN [63] as the DGM.

Van de Camp et al. [62] follow a similar approach to active subsampling, instead proposing
the use of a Gaussian Mixture Model (GMM) to approximate the measurement posterior, i.e.
p(yt | y0:t−1) ≈ 1

Ns

∑Ns

i=1 N (yt | y0:t−1, Iσ2), where Ns is the number of posterior samples. The
measurement locations with maximum entropy are then selected to be sampled next, estimating
the GMM entropy via an approximation introduced by [64]. This entropy approximation is a
function of the L2 distances between pixels across all pairs of posterior samples, leading to a
regions with high ’disagreement’ among samples being assigned high entropy. Van de Camp et
al. validate their sampling pipeline using two combinations of generative modeling architecture
and posterior sampling technique to sample from p(yt | y0:t−1). In particular, they use (i) a
VAE trained on MNIST [65] images, with Markov Chain Monte Carlo used to produce posterior
samples in the latent space, which are decoded to generate full measurement samples yt | y0:t−1,
and (ii) a GAN trained on MRI images from the fastMRI [1] dataset, with annealed Langevin
dynamics [23] for posterior sampling.

Elata et al. [66] propose AdaSense, an adaptive compressed sensing method using a Denoising
Diffusion Restoration Model (DDRM) [67] for posterior sampling. They propose using the Mean
Squared Error (MSE) attained by the linear Minimum Mean Squared Error (MMSE) predictor
as a measure of uncertainty. In the case where the values in A can be freely designed, AdaSense
uses the principle components of the posterior covariance as the rows of A, leveraging that
the principle components of the data covariance produce the linear MMSE predictor, thus
minimizing uncertainty about x. The algorithm proceeds iteratively by acquiring measurements
y using A, generating new posterior samples, and then adding the top r principles components
as new rows to A, and repeating. Low values for r then result in highly adaptive sampling, and
vice versa for higher r values. In many real world applications, however, A is constrained by the
measurement process, and may not be freely designed. In these cases, AdaSense incorporates a
new objective, aiming to minimize the linear MMSE when A is constrained to a set of possible
sensing matrices A, leading to the objective arg maxA∈A E[(x − E[x | y0:t−1])⊤A†A(x − E[x |
y0:t−1]) | y0:t−1]. Here, A† is the Moore-Penrose pseudo-inverse of A. For example, in MRI
acceleration, the set A might consist of all possible next masks, where each next mask adds a
new k-space line. AdaSense is validated on MRI acceleration and natural image reconstruction
tasks.

A limiting factor that is faced when using DMs to perform active sampling is the number
of Neural Function Evaluations (NFEs) necessary to perform posterior sampling, due to the
iterative nature of the reverse diffusion process. This may be in the range of hundreds to
thousands for high quality image generation. Running an entire reverse diffusion process for each
active sampling step may thus be infeasible for applications with high sampling rates. Nolan et
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al. [68] address this problem with Active Diffusion Subsampling (ADS), which performs K < T

active sampling steps in a single reverse diffusion process consisting of T steps, resulting in a
significant speedup for applications with large K. ADS uses DPS [28] as its posterior sampling
engine, tracking an estimate of the posterior throughout the reverse diffusion process, and using
it to select new measurement locations as it goes. This estimate of the posterior is computed
using a set of Ns partially denoised samples {x(i)

τ | y0:t−1}Ns
i=0 at reverse diffusion step τ , from

which fully-denoised samples {x(i)
0|τ | y0:t−1}Ns

i=0 are computed via Tweedie’s formula. ADS uses
the GMM-based approximation for p(yt | y0:t−1) proposed by Van de Camp et al. [62] to select
maximum entropy sampling locations, validating the method on MRI acceleration as well as
natural image subsampling.

Box 4.1 – Application: MRI

Data characteristics: Of particular relevance regarding the data rate in MRI is the
Repetition Time (TR), which measures the amount of time between successive pulse
sequences on the same slice, and therefore determines the acquisition time for a single
MRI slice. TR tends to range from hundreds to thousands of milliseconds. In the popular
fastMRI [1], for example, knee slices are acquired using TRs in the range 2200-3000ms.
Forward model: A typical MRI scan images a 3D volume consisting of a set of stacked
2D slices. MRI measurements are taken in the Fourier-space representation of the image,
referred to as the k-space, following the model y = Fx + ϵ, where ϵ is measurement noise,
x is the target image, and y are the k-space measurements. k-space measurements are
typically acquired by a series of pulse sequences for each slice, each of which provides
a single line of points in the k-space. Given a full set of these k-space lines, the image
can be recovered by the inverse Fourier transform. In accelerated MRI, the k-space lines
are subsampled, leading to the model y0:t = UFx + ϵ, where y0:t are the measurements
selected until time t by subsampling matrix U ∈ RN×M , i.e. A = UF, with the goal of
reconstructing the full image x.
Application of DGMs: For MRI reconstruction DGMs are typically fit on fully-
observed target images x. The DGM may, for example, be fit on complex-valued images
x ∈ CM [68], real images with a zeroed imaginary component [66], or other variants [58].
Then, given such a DGM, posterior sampling algorithms may be employed to recover
full images x ∼ p(x | y) from a subsampled k-space y.

Example 3: Accelerated MRI
As the final application, we consider accelerated MRI, a well-established use case for active
CS. For more context, see Box 4.1. Due to the relatively slow acquisition time (TR) in MRI,
inference time for popular DGM architectures falls within real-time ranges, particularly when
leveraging estimates of the posterior as in ADS or fast sampling algorithms such as DDRM
as in AdaSense. The active CS methods thus iteratively acquire k-space lines and update the
subsampling matrix so as to select maximally informative next measurements, leading finally
to a posterior distribution over fully reconstructed MRI images given the entire set of acquired
measurements. This process is illustrated in Figure 5.

It remains an open challenge to accelerate such methods further to achieve real-time active
CS in domains with shorter acquisition times, such as ultrasound imaging, which may require
a posterior inference time on the order of tens of milliseconds. However, with a combination of
algorithmic and hardware advancements, this may soon be achievable.
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5. Conclusion
Deep generative models are increasingly used to tackle problems involving high dimensional
data. However, their integration with active array sensing applications poses unique challenges
due to the need for real-time processing of the complex and dynamic nature of sensory data.
Despite these hurdles, the potential gains of using of DGMs to enhance signal reconstruction
by accurately modeling the underlying sensory data is significant. In this work, we highlight
several works that aspire to close the gap between current DGM capabilities and the demanding
requirements of sensing applications, with the focus on two key areas: mitigating model mismatch
through modeling of structured noise and addressing high-data rates and real-time processing
through reduced inference times and active compressed sensing techniques. To this end, we
showcase several illustrative applications that effectively apply DGMs for relevant problems in
the domains of medical imaging and automotive radar. While the methods discussed in this
review make substantial progress towards enabling real-time inference with DGMs, significant
challenges remain in addressing the complexities of sensory data. Notably, applications involving
extremely high data rates, such as 3D ultrasound and real-time radar systems, are not yet fully
explored. To avoid a latency increase in the aforementioned real-time sensing applications, future
work should optimize current methods by finding a balance between the powerful modeling
capabilities of DGMs and the deployed acceleration techniques.
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