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Abstract— Three-dimensional ultrasound enables real-
time volumetric visualization of anatomical structures. Un-
like traditional 2D ultrasound, 3D imaging reduces the
reliance on precise probe orientation, potentially making
ultrasound more accessible to clinicians with varying levels
of experience and improving automated measurements and
post-exam analysis. However, achieving both high volume
rates and high image quality remains a significant chal-
lenge. While 3D diverging waves can provide high volume
rates, they suffer from limited tissue harmonic generation
and increased multipath effects, which degrade image qual-
ity. One compromise is to retain the focusing in elevation
while leveraging unfocused diverging waves in the lateral
direction to reduce the number of transmissions per ele-
vation plane. Reaching the volume rates achieved by full
3D diverging waves, however, requires dramatically under-
sampling the number of elevation planes. Subsequently,
to render the full volume, simple interpolation techniques
are applied. This paper introduces a novel approach to 3D
ultrasound reconstruction from a reduced set of elevation
planes by employing diffusion models (DMs) to achieve
increased spatial and temporal resolution. We compare
both traditional and supervised deep learning-based in-
terpolation methods on a 3D cardiac ultrasound dataset.
Our results show that DM-based reconstruction consis-
tently outperforms the baselines in image quality and down-
stream task performance. Additionally, we accelerate infer-
ence by leveraging the temporal consistency inherent to ul-
trasound sequences. Finally, we explore the robustness of
the proposed method by exploiting the probabilistic nature
of diffusion posterior sampling to quantify reconstruction
uncertainty and demonstrate improved recall on out-of-
distribution data with synthetic anomalies under strong
subsampling.

Index Terms— 3D ultrasound, diffusion models, genera-
tive modeling, cardiac ultrasound

[. INTRODUCTION

HREE-dimensional (3D) ultrasound imaging, also known
as volumetric ultrasound imaging, is achieved through the
use of a 2D matrix probe which enables focusing of ultrasound
beams in both azimuth and elevation dimensions through elec-
tronic steering [1]. It overcomes several challenges associated
with traditional 2D ultrasound imaging, such as the inability
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to capture out-of-plane motion and the lack of spatial orien-
tation. These limitations make 2D imaging highly operator-
dependent, requiring multiple scans to mentally reconstruct
anatomy, which is time-consuming, variable across users, and
difficult to reproduce. As a result, diagnostic accuracy and
interventional guidance can suffer from inconsistency [2], [3].

The transition to 3D ultrasound imaging addresses these
limitations by offering volumetric data, enabling applications
such as 3D echocardiography [4]-[6] and 3D breast imag-
ing [7]. It also provides improved guidance during image-
guided therapy and biopsies [8] and supports greater automa-
tion of critical diagnostic measurements, including ejection
fraction [9] and strain assessment [10], [11].

However, 3D imaging introduces new challenges, such as
increased data acquisition times and higher computational
demands [12]. These factors constrain the design of probes and
transmit sequences, limiting the accessibility of high-quality
3D imaging in real-time clinical settings. Additionally, the
reduced image quality compared to 2D imaging often discour-
ages clinicians from utilizing 3D imaging, as the degradation
in resolution and clarity frequently outweighs its potential
benefits in practical scenarios.

In addressing the trade-offs inherent to 3D ultrasound, it
is beneficial to differentiate between two key phases of the
imaging process: acquisition and reconstruction. Acquisition
refers to the process of transmitting and receiving ultrasound
waves, which can be optimized to minimize data acquisition
times while maintaining sufficient information for effective
image reconstruction. The increased field of view in 3D imag-
ing, while enabling more comprehensive anatomical coverage,
leads to acquisition times that are prohibitively long under
standard transmit schemes. Combined with the large number
of elements in 2D matrix arrays, which significantly increases
data rates, this has necessitated the development of bandwidth-
efficient solutions.

Microbeamforming reduces data transmission by perform-
ing partial beamforming within the probe itself, grouping
elements into sub-apertures, at the cost of reduced lateral
resolution. Slow-time multiplexing limits the number of active
elements per transmission, reducing bandwidth but lowering
frame rates. Other techniques like compressed sensing (CS)
aim to reduce the number of samples needed by exploiting
the inherent sparsity of ultrasound signals. In 2D ultrasound,
Wagner et al. [13] applied CS to radio-frequency (RF) signals
using Xampling, simplifying acquisition through structured
signal representations. This was extended to 3D ultrasound
by Burshtein et al. [14], who demonstrated the approach for
volumetric imaging. Learned approaches for designing sparse
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sensing matrices in ultrasound imaging have shown promising
results. Lorintiu et al. [15] employed learned overcomplete
dictionaries for scanline selection in volumetric ultrasound,
while Huijben et al. [16] proposed a deep learning-based prob-
abilistic subsampling scheme that generates context-specific
sensing matrices for 2D ultrasound.

Reconstruction, on the other hand, involves the process of
generating a 3D image or volume from the acquired data.
Traditional reconstruction techniques, such as pixel or voxel
nearest-neighbor (PNN or VNN) interpolation, simply fill in
missing information by relying on nearby sampled points [12],
[17]. Function-based interpolation methods are an improved,
albeit usually more computationally demanding, alternative,
where a particular function, for example, a polynomial, is fitted
through the acquired voxels.

Recently, deep learning has emerged as a powerful tool
for ultrasound image reconstruction [18]. Specifically, deep
generative models (DGMs) have proven to be the missing link
in learning expressive image priors [19], [20]. Unlike conven-
tional supervised approaches that learn a direct mapping from
measurements to images, generative models learn the underly-
ing data distribution in a self-supervised manner. This enables
reconstruction to be framed as Bayesian inference, where the
likelihood captures the forward measurement process and the
generative model acts as a learned prior. Posterior sampling
then allows for the recovery of plausible and diverse image
reconstructions from sparse or noisy inputs. Consequently,
DGMs are task-agnostic and naturally support uncertainty esti-
mation within a probabilistic framework, improving robustness
to out-of-distribution (OoD) data.

A specific subset of DGMs, generative adversarial networks
(GANs), has been successfully applied in 3D ultrasound
imaging to upscale sparsely acquired 2D images to reconstruct
a full volume [21], [22]. Also, variational autoencoders (VAEs)
have been used to synthesize 3D ultrasound data with the
purpose of augmenting existing datasets [23].

More recently, diffusion models have seen a surge of interest
due to their powerful generative capabilities and practical
training objective. In the field of ultrasound, diffusion models
are used for image generation [24]-[26], denoising and dehaz-
ing [27]-[29] and image reconstruction [30]-[32]. While diffu-
sion models generally converge more reliably during training
compared to GANs and produce higher quality samples than
VAEs, they tend to be more computationally demanding during
inference due to their iterative nature. Many works have
shown, however, that it is feasible to accelerate diffusion
models using various techniques, such as leveraging structure
in sequential data [33] or model distillation [34].

In this work, we propose a flexible interpolation framework
based on diffusion models for 3D ultrasound reconstruction,
enabling high-volume rates without compromising image qual-
ity. Specifically, we demonstrate our approach on an in-vivo
cardiac 3D ultrasound dataset, achieving a 4x increase in
volume rate while maintaining comparable image quality and
performance in downstream tasks.
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Fig. 1: Geometric visualization of the three common cross-
sections in volumetric ultrasound imaging (left) with a B-mode
example (right).

Our main contributions can be summarized as follows:

o Development of a deep generative prior for 3D cardiac
ultrasound in the form of a diffusion model.

o A practical posterior sampling framework that can inter-
polate sparsely sampled ultrasound volumes.

o Techniques to mitigate and visualize uncertainty of the
generative model by drawing multiple posterior samples.

« An extensive comparison with existing interpolation tech-
niques, showcasing the advantage of using deep genera-
tive priors, with evaluation based on both image quality
metrics and a clinically relevant downstream task.

« Code and supplementary materials are available.!

Il. BACKGROUND

In this section, we will briefly discuss basic concepts in
3D ultrasound imaging and diffusion models and their use in
learning image priors, which form the basis of the proposed
methodology.

A. 3D Ultrasound Acquisition

Modern ultrasound probes that enable 3D imaging form a
matrix of transducer elements, that allows for dynamic beam
steering along both azimuth (lateral) and elevation axes. The
full 3D ultrasound volume X € R¥e:NuNa - after acquisition
and beamforming, can be written as a tensor:

X1,1  X1,2 X1,Ny
X2,1 X2.2 X2, N,,

X= . ; (D
xNehl XNcla2 T XNclyNaz

with elements x € RV=. The dimensions N, N,;, and Ny
represent the number of samples acquired along the elevation,
azimuth, and axial directions, respectively. From X, three
orthogonal planes can be identified: the A, B, and C planes.
Rows in X can be considered lateral 2D images at a fixed
elevation plane, akin to traditional 2D B-mode imaging (
). The columns represent elevation images (B plane)
which are perpendicular to the A plane. If A plane images
provide a long-axis view, the B plane offers the corresponding
short-axis view. The C plane, represents slices parallel to the

lhttps ://3d-ultrasound-diffusion.github.io



TRISTAN S.W. STEVENS et al.: HIGH-QUALITY AND HIGH VOLUME RATE 3D ULTRASOUND RECONSTRUCTION WITH DIFFUSION MODELS 3

probe surface, acquired at a fixed axial depth. See Fig. 1 for
a visualization of all three planes in relation to each other.

For transthoracic transducers, the design is often asymmet-
ric, featuring a smaller aperture along the elevation axis to
facilitate access through narrow imaging windows between
the ribs. The smaller aperture broadens the beam and reduces
elevational resolution, while a lower element count with wider
spacing increases grating lobe artifacts, degrading image qual-
ity. Typically, to achieve sufficient temporal resolution, a faster
acquisition scheme such as diverging waves is employed along
the azimuth dimension, while focused transmits are applied
along elevation at a coarse interval. Employing only diverging
waves in both dimensions significantly degrades image quality
because the unfocused beams produce lower acoustic pres-
sure, resulting in reduced harmonic generation and increased
multipath scattering. To compensate for these effects, higher
transmit power is required, which raises the mechanical index
(MI) and poses challenges for transducer design and patient
safety. In contrast, fully focusing across both dimensions
improves image quality and resolution, but at the cost of frame
rate, since more transmits are needed to cover the entire field
of view. As a compromise, combining diverging waves in
azimuth with focused transmits along elevation balances image
quality and acquisition speed. Limiting the number of focused
elevation angles directly impacts the maximum achievable
volume rate, but introduces gaps in the volumetric data.
To mitigate this, we adopt a sparse interlocking acquisition
scheme, as illustrated in Fig. 2, where different elevation
planes are acquired at each time step in a staggered pattern.
This ensures that across consecutive frames, complementary
slices are captured, allowing temporal redundancy to aid in
volumetric reconstruction. Still, at lower acquisition rates,
high-quality interpolation remains a challenge.

B. Diffusion Models

Generative models seek to learn the data distribution p(x)
of some random variable x. Instead of explicitly model-
ing the distribution, which is often intractable given high-
dimensional data, these generative models implicitly model
their distribution using a generative process, i.e. producing
samples from the underlying distribution x ~ p(x). Diffusion
models (DMs) [35], [36] are a class of generative models that
define the generative process as the reversal of a corruption
process, which transforms xo = x ~ p(x) into a Gaussian
base distribution x7 ~ N(0,I). This continuous forward pro-
cess Xo — X, — X7, with diffusion time 7 € [0, 7], can be
trivially executed through adding Gaussian noise to initial data
samples:

X, = a,Xg +0r€, €~ N(0,T1), )
where «, and o, are the signal and noise terms respectively,
defined by some pre-defined noise schedule. Naturally, we are
interested in the reversal of this corruption process, which
is akin to sampling from the target distribution p(x). This
can be interpreted as iteratively denoising the noisy estimate
X, [37]. Tweedie’s formula relates the minimum mean square
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Fig. 2: Schematic representation of the acquisition scheme,
with sparse interlocking patterns over time. A full set of
azimuthal lines (corresponding to a single elevation plane) is
acquired at a time.

error estimator (MMSE) to the score of the distribution:

1
xo ~ E[xo[x-] = OT(XT + 07 Vx, log p(x;)), (3)
T N——

where xo|, := E[xo|x,] represents the one-step denoised
estimate from diffusion step 7. The score function, defined
as the gradient of the log-likelihood of x,, points towards
the data distribution. Since Tweedie’s formula provides only a
local (at time 7) estimate, the final prediction of xg is obtained
iteratively. At each step, X is estimated using (3) and mapped
back to x,_; via forward diffusion in (2), ensuring a smooth
sampling trajectory. The score function can be parameterized
using a neural network, conditioned on the diffusion timestep
7. For practical reasons, the noise is predicted instead of
the score, as it directly relates to the score via €p(x,,7) =~
—0,Vx, log p(x,) [38]. The network can be simply trained
using the denoising score-matching objective as follows:

£(9) = EXONP(X()),E,T |:||69(X7.,7') - 6“2} . (4)

[1l. METHODS

We formulate sparse 3D ultrasound reconstruction as an
inverse problem, using DMs as image priors. This allows
training a self-supervised model that learns the data distri-
bution without paired examples. The learned prior is then
applied during the inversion process, offering a task-agnostic
framework that can be applied to various inverse problems
without retraining. For the problem at hand, this flexibility
allows for modifying the sampled scan-lines at test time,
effectively changing the measurement matrix (i.e. sampling
mask) adaptively. A conceptual overview of the proposed
method is shown in Fig. 3.

We begin by formally describing the inverse problem in
Section III-A, defining the interpolation task within a proba-
bilistic framework and outlining how posterior sampling with
diffusion models (see Section II-B) can be leveraged for
reconstruction. Next, we discuss the choice of prior for 3D
ultrasound data and detail the training process of the diffusion
model in Section III-B. Finally, we explore strategies to incor-
porate temporal information during inference (Section III-C)
and assess the models’ uncertainty in the interpolated results
(Section III-D).
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A. Interpolation of 3D Ultrasound

As discussed in Section II-A, the fully sampled 3D ultra-
sound volume is given by X, while the partially observed
volume, following the Bayesian framework, is denoted by Y.
Using their vectorized forms, x and y, respectively, the inverse
problem of inpainting missing data can be formulated as:

y = Ax, (5)

where the binary measurement matrix A € {0,1}™"" with

dimensions d = Ng X N,, X N, and m < n, defines
the acceleration rate as 7 = n/m. The measurement matrix is
related to the element-wise masking operator M as follows:

M = diag(AT A) (6)

which allows us to express the backprojected (zero-filled)
observations as:

yi=Ay=MOox, (7)

which we will use later mainly for visualization of both
measurements and mask in the full image space. Since (5)
is underdetermined, inferring x from y is inherently chal-
lenging. There are many possible solutions that could explain
the observed data. To address this, strong prior knowledge
about the structure of x must be incorporated, guiding the
reconstruction towards a plausible solution. This motivates the
use of deep generative models, specifically posterior sampling
with diffusion models. Given the linear forward model in
(5), the posterior distribution p(x|y) can be sampled through
simple application of Bayes’ rule for scores:

Vi, logp(x;|y) = Vx, logp(y|x:) + Vi, logp(x;)  (8)

posterior likelihood prior

while the prior is modeled through the score network (see Sec-
tion II-B), the likelihood term is closed-form. The likelihood
term ensures that generated samples are consistent with the
measurement and is also referred to as guidance as it guides
the diffusion process. This expression needs to be evaluated for
all diffusion timesteps 7, which is typically intractable. There
are several posterior sampling methods for diffusion models
which circumvent this issue [39]. In this work, we will use
the popular diffusion posterior sampling (DPS) method [40],
which interleaves prior updates (i.e. denoising) with guidance
steps (gradient step towards the measurement). We now derive
the corresponding expression for the time-dependent log-
likelihood score used to guide the diffusion process via DPS,
based on the formulation in (8):

Vi, logp(y[x;) = Vx, logp (¥ | Xo|+) ©
1 2
= "5z Vxr [y = Axol- (10
I o1 T
= VAT (3 Axor) an
~— v (I- O'TVXTGQ(XT,T))T AT (y— Axq;)
~~
Guidance Projection Measurement
strength error
(12)

where (9) uses the Tweedie’s estimate from (3) to guarantee
tractability [39], [40]. In (10), we relax the delta likelihood
(as follows from our noiseless forward model (5)) as a Gaus-
sian N (y; Ax,021). Additionally, in (12), we use (3) again
and subsequently substitute the actual score for the trained
score model, introducing the final approximation. Lastly, as
is commonly done, we depart from the theoretical guidance
strength by reweighing the likelihood with hyperparameter
in (12). An overview of the full algorithm for interpolating 3D
ultrasound data, combining both diffusion (prior) and guidance
(likelihood) steps, is shown in Algorithm 1, also incorporating
design choices detailed in the following two Sections III-B
and III-C

Algorithm 1 3D Ultrasound Interpolation using DMs

Require: subsampling rate » € (0, 1], partial volume Y €
RNex N x Nox - measurement matrix A € {0, 1}(7-Na)xNa
score model €y (-), guidance strength ~, diffusion steps T,
noise schedule o, o, for 7 € [0, 7] (discretized)

Optional: previous reconstruction XP"®, accelerated step Tini;

Ensure: reconstructed volume X & RNe X Naw X Nax

1: Initialize X « 0 € RNerXNuXNux
2: Define {(y,?)} as B plane slices and their indices from Y

3: for each (y, ) in parallel do
4 if XP™" available then
5 xg < slice(XP" 4)
6: e ~N(0,1)
7: X 4 Qg X0 + 07 €
8 else
9 X, < x7 ~ N(0,0%1)
10: Tinit = T
11: for 7 = 7y to O do
12: € eg(Xr,7T)
13: Xo|r Q%(XT — 0€)
14: M; —y — Axg,
15: Py (1— 0.V eg(x,,7))" AT
16: Xo|r < Xo|r — YPr M
17: X7 < QrXg|r +07€
18: X < insert(X, xo, ¢)

return X

B. Training and Choice of Prior

Selecting an appropriate representation for learning 3D
ultrasound priors is nontrivial, particularly when considering
all possible design options for how to present the data to the
diffusion model. A seemingly straightforward approach is to
employ a fully 3D generative model to learn the 3D prior;
however, this introduces several challenges. First, as the di-
mensionality of both the data and model increases, the amount
of training data required to capture the distribution grows
exponentially [41], making 3D generative models highly data
hungry. Second, 3D ultrasound data exhibits strong spatial
and temporal correlations, which can be leveraged to improve
efficiency when transitioning from 2D to 3D representations.
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Fig. 3: Overview of the training and inference pipeline for diffusion-based interpolation of 3D ultrasound volumes. A 2D
score-based prior is learned from fully sampled elevation (B-plane) slices extracted from the training dataset. At inference
time, this generative prior guides the posterior sampling process to reconstruct from subsampled B-planes. See Algorithm 1

for details of the proposed interpolation method using DMs.

Lastly, 3D models impose significant computational demands,
requiring substantial GPU memory and extended training
times, which limits their feasibility in practical applications.
To mitigate these challenges, we adopt a strategy that
utilizes 2D models for learning a prior across cross-sections
(B-planes). Prior work has demonstrated the success of such
approaches for high-dimensional data, including 3D [42] as
well as sequence data [33], [43]. Additionally, 2D models and
2D ultrasound datasets are more readily available, making it
easier to leverage pretrained models and integrate them into
the proposed framework. Therefore, given the fully sampled
3D ultrasound volume X as defined in (1), we construct a
dataset X = xéll),xg), . ’X£1|X|)} ~ p(xe), which is
comprised of elevation slices (B plane). In relation to the full
volume X, the slice is highlighted in green as follows:

X311  X1.2 X1,Na,
X211 X272 X2,N,,
X= (13)
XNely]- XN&I;Q T XNehNaz
~—~—
xe](l)

Moreover, we use log-compressed image data (B-mode) in
the native polar coordinate system, as defined in (II-A). For
visualization purposes, all images presented in this paper are
shown after scan-conversion to a Cartesian grid, allowing the
anatomy to be displayed in its true physical coordinate system.

Our dataset consists of 100 in vivo volumetric cardiac cine-
loops, recorded using an X5-1C matrix phased array transducer
connected to a Philips EPIQ scanner. The volumes were
collected from various sites and scanning sessions involving
16 patients and contain, on average, 40 frames, spanning
at least one full cardiac cycle. Approximately 10% of the

dataset is reserved for validation and testing, with one cine-
loop designated for validation and hyperparameter tuning, and
the remaining seven cine-loops from three patients used for
testing.

The diffusion model is trained using the denoising score
matching objective from (4), with a time-conditioned U-Net
(=3.9M parameters) with sinusoidal embeddings [44] as the
backbone architecture. We optimize the model using AdamW
with a learning rate of le—4 and weight decay of le—4.
Finally, we turn on exponential moving average (EMA) of
0.999, minimizing an MSE loss over approximately 25 epochs.

C. Temporal consistency

Ensuring temporal consistency across frames is crucial
for high-quality 3D ultrasound reconstruction. By explicitly
incorporating temporal information, we can produce more
coherent and stable reconstructions over time, reducing flicker
and improving clinical interpretability. To achieve this, we
build upon SeqDiff [33], which exploits temporal continuity
by initializing the current frame’s diffusion process from
the previous frame’s reconstruction. Rather than starting the
generative process from pure noise at the beginning of each
frame, SeqDiff warm-starts the diffusion at an intermediate
step along the reverse trajectory, effectively integrating tem-
poral consistency into the sampling process. Formally, SeqDiff
initializes the diffusion process at some intermediate step 7’
along the reverse diffusion trajectory, where 0 < 7/ < T,
effectively reducing the number of iterations. Rather than
beginning each generation from scratch at 7 = 7T using a
pure Gaussian sample x7 ~ N (O,U%—I ), SeqDiff initializes
the process using a previous solution xg_l, forward-diffused
to the current 7',

Specifically, we reconstruct from a sequence of time-
dependent measurements y* = A’*x*, where A varies accord-
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ing to the sparse interlocking acquisition scheme as described
in Fig. 2 and x* and x*~! are assumed to exhibit strong struc-
tural similarity. By propagating prior reconstructions forward
to an intermediate noise level and using them as initialization,
we significantly reduce computation and improve temporal
consistency in the reconstructions. This approach is well-
suited for cardiac ultrasound, where, at high frame rates, the
anatomy changes gradually over time. Thereby, the previous
frame’s reconstruction serves as an effective prior, allowing
each newly acquired set of elevation planes to benefit from
earlier information.

D. Uncertainty Quantification

Many interpolation methods provide only a single point-
estimate reconstruction, failing to represent the uncertainty
inherent to the inverse problem. Given the probabilistic nature
of DPS, however, our method can quantify the uncertainty
present in its reconstructions. Quantifying the uncertainty can
help mitigate hallucinations, in which a model generates one
of many plausible anatomies, which may be convincing but not
truthful. Or, more critically, overlooks an anatomical feature
that is in fact present. In what follows, we describe two
methods to quantify this uncertainty and communicate it to
the user.

The posterior sampling approach as discussed in Section III-
A allows us to draw N samples {xV1Y ~ p(x|y) from
the posterior, inherently providing an estimate of uncertainty
of the interpolated result. Luckily, drawing multiple posterior
samples can be executed in parallel on the GPU, minimiz-
ing the additional computational expense. We propose two
methods for visualizing the model’s uncertainty, along with
an outlook for future work. An example of both methods for
various acceleration rates is shown in Fig. 5.

1) Variance Heat Map: By analyzing the pixel-wise variance
across posterior samples, we can assess which regions exhibit
higher or lower certainty, where X is the sample mean:

02 = E[(x~Ep)?] ~ %Z [ —x7]. a4
7
For instance, directly acquired scan lines are well-constrained
by the measurement model and therefore exhibit minimal
variance. In contrast, non-acquired scan lines rely on the
generative model for reconstruction, where higher uncertainty
manifests as greater variance in the posterior samples.

2) Composite Image: An alternative approach to uncertainty
visualization involves creating a composite image by sampling
pixels randomly from each posterior sample.

vj € [0,len(x)) : ; =x.", with i ~ Uniform(1, N')
15)
This introduces perceivable noise in uncertain regions while
maintaining a consistent appearance in regions where the
samples agree. The rationale for this presentation is that,
intuitively, the operator will naturally place less confidence in
the regions that appear noisy, as noisier areas indicate greater
model uncertainty.
Finally, beyond visualization techniques, it is crucial to rec-
ognize the inherent limitations of the model. In particular, it is

important to consider that, in unobserved regions, the posterior
samples will only vary according to the distribution that has
been learned by the model, and potentially fail to include valid
reconstructions that fall outside the training distribution. It
is therefore essential to understand how much subsampling
remains acceptable for a given application. In the following
experiments section, we analyze the model’s performance
across various tasks and acquisition rates to determine the
trade-offs between image quality and subsampling levels.

V. EXPERIMENTS

We perform both qualitative and quantitative analyses to
assess the benefit of advanced interpolation methods for 3D
ultrasound reconstruction. The most straightforward compar-
ison investigates image quality directly through the use of
common image quality metrics. We leverage both (pixel-
wise) distortion and (global) perceptual metrics. Finally, we
perform an experiment on speckle tracking, a common clinical
downstream task in cardiac imaging, to further validate our
approach. All results are generated using parameters 7 =
200, 7" = 50, = 35, which were optimized for the validation
split as outlined in Section III-B.

A. Baselines

In every experiment, we consider the fully sampled volume
as the ground truth. This allows for both quantitative evalua-
tion of reconstruction quality and comparison of downstream
task performance between interpolated and fully acquired
volumes. Image quality metrics are computed in the original
polar domain, where interpolation is performed, to avoid
confounding effects from scan conversion, which itself applies
interpolation.

1) Linear and nearest-neighbor interpolation: The most
straightforward methods for volumetric interpolation in 3D
ultrasound are nearest-neighbor and linear interpolation along
the elevation axis. We include these traditional techniques as
simple baselines for reference. Nearest-neighbor fills missing
slices by duplicating the nearest acquired slice, effectively vi-
sualizing the sparse measurements in the full volume. This ap-
proach introduces blocky artifacts and discontinuities. Linear
interpolation averages neighboring slices to produce smoother
transitions but often results in blurring and loss of detail. Both
methods are low in complexity and easily implemented in
clinical systems. However, they lack anatomical awareness,
limiting their effectiveness at higher acceleration rates. While
they may suffice at lower rates, doing so constrains the
potential temporal resolution gains targeted in this work.

2) Supervised learning: Additionally, we include a baseline
that trains a deep learning network in a fully supervised, end-
to-end manner for inpainting 3D ultrasound. Specifically, we
employ the same U-Net architecture as used by the diffusion
model of the proposed approach (see Section III-B), and focus
on the inpainting of individual elevation slices, maintaining
the same problem scope. Unlike the diffusion model, which
leverages an explicit forward model during sampling, this
baseline does not explicitly incorporate forward model knowl-
edge during inference. Instead, it learns a data-driven mapping
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Fig. 4: Qualitative comparison of the proposed Diffusion-based interpolation method with baseline approaches (Nearest, Linear,
and U-Net). The figure displays three B-plane slices from a single 3D volume, with their positions within the frustum geometry

illustrated on the left. Acceleration rate is set to r = 3.
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Fig. 5: The posterior mean, variance, and composite images
for reconstructions with fractions of the elevation planes ac-
quired r = (8%,4x,2x). It is clear that the posterior samples
vary more in the unmeasured regions of tissue, and that
acquiring more elevation planes reduces the overall uncertainty
and boosts the reconstruction quality.

x = fo(y,) from zero-filled input measurements y,, see
(7), to complete reconstructions. Consequently, the network’s
performance may degrade on unseen mask patterns, in contrast
to the diffusion model’s task-agnostic approach.

B. Image quality

Fig. 4 shows a visual comparison of the proposed interpo-
lation method with respect to the baselines. Additionally, we
evaluate the interpolated volumes using peak signal-to-noise
ratio (PSNR) as a pixel-wise distortion metric and learned
perceptual image patch similarity (LPIPS) [45] to measure
perceptual quality, assessing both aspects of the perception-
distortion tradeoff [46]. Fig. 6 shows the image quality of
each interpolation method with respect to the fully sampled
and reconstructed 3D volume. The LPIPS is a 2D image
metric, which we apply to all the B-planes separately. Unlike
the diffusion-based method, all baseline methods come with
significant visible interpolation artifacts, which are clearly
reflected by the perceptual metric. This trend continues in
Fig. 7 and Fig. 8, which show distortion and perceptual image
quality performance against various subsampling factors.
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Fig. 6: Image quality for various 3D interpolation methods.
Testing for both distortion (PSNR) (1) (blue) and perceptual
(LPIPS) () (purple) metrics. Acceleration rate is set to r = 6.
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Fig. 7: Reconstruction performance evaluated using a distor-
tion metric (PSNR) across various interpolation methods at
increasing acceleration rates r € {2, 3,6, 10}.
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Fig. 8: Reconstruction performance evaluated using a percep-
tual metric (LPIPS) across various interpolation methods at
increasing acceleration rates r € {2, 3,6, 10}.
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Fig. 9: Speckle tracking performance comparison across vari-
ous interpolation methods at a acceleration rate of » = 6. The
proposed method shows significant improvement over baseline
approaches.

C. Speckle tracking

Speckle tracking is used to assess tissue motion and defor-
mation by tracking speckle patterns across frames [47], e.g. en-
abling strain measurements for evaluating myocardial function.
While 2D speckle tracking is commonly used, it is limited by
out-of-plane motion and foreshortening artifacts. Volumetric
ultrasound imaging mitigates these limitations by providing
full 3D motion tracking, improving robustness and accuracy.
To assess the impact of different reconstruction methods on
motion estimation, we evaluate speckle tracking performance
on both ground truth and interpolated data. As shown in Fig. 9,
the proposed method demonstrates a noticeable reduction in
tracking error compared to the other approaches. This can
be attributed to the integrated temporal consistency (SeqDiff)
of the proposed method as well as improved fidelity of the
reconstructions.

D. Out-of-distribution data

Our final experiment evaluates the robustness of the pro-
posed method to out-of-distribution (OoD) data. As discussed
in Section III-D, a concern with generative models is their ten-
dency to hallucinate structures or overlook important anatom-
ical features when faced with ambiguous or unseen data.
This experiment specifically investigates such failure modes
by introducing synthetic anomalies into the test set.

We augment the test volumes with bright masses, which
are simulated as circular inclusions of fixed diameter 5px
and uniform brightness (70%), randomly positioned within
the volume. These inclusions are clearly OoD, as perfectly
circular, high-contrast structures are not present in the training
data. Importantly, this setup provides access to ground truth
inclusion locations, allowing for quantitative evaluation. After
subsampling and reconstruction, we compute the pixel-level
recall of the inserted inclusions. A pixel is considered correctly
recalled if its intensity lies within 10% of the true inclusion
value. The results are averaged over 10 randomly placed inclu-
sions per configuration. See Fig. 10 for the recall performance
across acceleration rates, as well as a visual example.

Interestingly, our method demonstrates consistently higher
recall than baseline approaches, especially under strong sub-
sampling. We attribute this to two key factors. First, the
explicit conditioning on measured data during inference en-
sures consistency with the acquired measurements, improving
reliability under distribution shifts. This contrasts with the
supervised baselines trained end-to-end without an explicit
measurement model. Second, by initialization of each recon-
struction with the previous frame via SeqDiff, we do not only
accelerate inference but also enhance robustness to anomalies
by leveraging temporal continuity in the data.

V. DISCUSSION

This work demonstrates the effectiveness of DM-based
interpolation for reconstructing volumetric ultrasound from
sparsely acquired elevation planes. This section outlines key
implications of our results, including benefits of the proba-
bilistic formulation, temporal consistency, and potential for
real-time deployment. We also discuss considerations for in-
tegration into clinical workflows and future adaptive imaging
systems.

A key strength of our method lies in its probabilistic formu-
lation. The posterior sampling framework not only enhances
robustness to OoD data but also yields uncertainty estimates
that can inform downstream tasks or guide acquisition. This
is especially relevant for integration with active imaging
systems [19], [48], [49], where uncertainty can drive intelligent
transmit selection to minimize ambiguity in real time. In this
work, we focus on reconstruction from a fixed acquisition
pattern, but our approach lays important groundwork for
closed-loop, adaptive imaging pipelines.

Temporal consistency is another benefit, achieved by incor-
porating SeqDiff into the sampling process. The integration of
prior information stabilizes the generative process over time,
enabling more coherent predictions and reducing redundant
computations. In practice, we observe it improves both per-
ceptual quality and robustness under aggressive subsampling.
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Fig. 10: (a) Pixel recall for synthetic out-of-distribution inclusions at varying acceleration rates r € {2, 3,6, 10}, averaged over
10 randomly inserted inclusions with 95% confidence intervals. (b) Example of three consecutive frames (r = 3), with random
inclusions highlighted in red ©. When the inclusion is not fully covered by an acquisition, baseline methods recover less of
the circle, whereas the proposed method achieves better reconstruction due to built-in temporal consistency.

A critical aspect is the feasibility of real-time deployment.
While diffusion models are inherently iterative, our current
implementation achieves reconstruction times on the order of
several ms/step, with convergence typically reached in 20-50
steps. All elevation planes can be reconstructed in parallel on
modern GPUs, enabling near real-time throughput for full-
volume reconstruction. Further acceleration could be achieved
using model distillation [34], latent diffusion models [50], or
advanced sampling strategies [51].

Finally, even in the absence of real-time operation, the
method is well suited for offline clinical workflows. In many
cases, only a 2D view is presented on display even with 3D
imaging turned on. Similarly, applications like patch ultra-
sound [52] do not require any real-time imaging. In such cases,
low-resolution previews can guide acquisition, while high-
quality reconstructions are generated afterward for diagnostic
interpretation. This deferred processing model aligns with
existing practices in the clinical workflow, where clinicians
often analyze stored image sequences after a scanning session.

VI. CONCLUSION

3D ultrasound holds significant promise for the future of
ultrasound imaging, particularly in cardiac applications. How-
ever, its clinical adoption remains limited due to constraints in
temporal and spatial resolution, often leading clinicians to fall
back to 2D imaging. To push this trade-off, one can employ
spatial subsampling to reduce the number of transmit events,
thereby enabling higher frame rates or broader coverage.
Yet, conventional interpolation methods, as well as super-
vised learning-based approaches, struggle to fully reconstruct
undersampled volumes, especially at high acceleration rates.
In this work, we reframe 3D ultrasound reconstruction as a
Bayesian inverse problem, leveraging deep generative priors
to substantially improve reconstruction quality. Our approach
demonstrates clear benefits not only in terms of visual fidelity
but also in clinically relevant downstream tasks such as
speckle tracking. Moreover, by extending our diffusion-based
interpolation framework to exploit the sequential nature of
ultrasound data, we achieve both improved temporal consis-
tency and significant acceleration, bringing the method closer

to real-time applicability. Finally, the probabilistic nature of
our model enables estimation of reconstruction uncertainty,
offering a valuable tool for clinical decision-making and a
foundation for future work on uncertainty-aware imaging and
adaptive acquisition strategies [19].
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